Skip to main content
Log in

Application of sequential leaching, risk indices and multivariate statistics to evaluate heavy metal contamination of estuarine sediments: Dhamara Estuary, East Coast of India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In the present study, concentration of some selected trace metals (Fe, Mn, Ni, Co, Pb, Zn, Cu, Cr and Cd) are measured in Brahmani, Baitarani river complex along with Dhamara estuary and its near shore. Chemical partitioning has been made to establish association of metals into different geochemical phases. The exchangeable fraction is having high environmental risk among non-lithogeneous phases due to greater potential for mobility into pore water. The metals with highest bio-availability being Cd, Zn and Cr. The metals like Mn, Zn, Cd and Cu represent an appreciable portion in carbonate phase. Fe–Mn oxides act as efficient scavenger for most of the metals playing a prime role in controlling their fate and transport. Among non-lithogeneous phases apart from reducible, Cr showed a significant enrichment in organic phase. Risk assessment code values indicate that all metals except Fe fall under medium-risk zone. In estuarine zone Cd, Zn, Pb and Cr are released to 32.43, 26.10, 21.81 and 20 %, respectively, indicating their significant bio-availability pose high ecological risk. A quantitative approach has been made through the use of different risk indices like enrichment factor, geo-accumulation index and pollution load index. Factor analysis indicates that in riverine zone, Fe–Mn oxides/hydroxides seem to play an important role in scavenging metals, in estuarine zone, organic precipitation and adsorption to the fine silt and clay particles while in coastal zone, co-precipitation with Fe could be the mechanism for the same. Canonical discriminant function indicates that it is highly successful in discriminating the groups as predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alagarsamy, R. (2006). Distribution and seasonal variation of trace metals in surface sediments of the Mandovi Estuary, West Coast of India. Estuarine, Coastal and Shelf Science, 67(1–2), 333–339.

    Article  CAS  Google Scholar 

  • Algarsamy, R. (2009). Geochemical variability of copper and iron in Oman Margin sediments. Microchemical Journal, 91, 111–117.

    Article  Google Scholar 

  • Balachandran, K. K., Laluraj, C. M., Martin, G. D., Srinivas, K., & Venugopal, P. (2006). Environmental analysis of heavy metal deposition in a flow restricted tropical estuary and its adjacent shelf. Environmental Forensics, 7, 345–351.

    Article  CAS  Google Scholar 

  • Biksham, G., & Subramanian, V. (1988). Elemental composition of Godavari sediments (Central and Southern Indian Subcontinent). Chemical Geology, 70, 275–286.

    Article  CAS  Google Scholar 

  • Billon, G., Ouddane, B., Recourt, P., & Boughriet, A. (2002). Depth variability and some geochemical characteristics of Fe, Mn, Ca, Mg, Sr, S, P, Cd and Zn in anoxic sediments from Authie Bay (Nortern France). Estuarine, Coastal and Shelf Science, 55, 167–181.

    Article  CAS  Google Scholar 

  • Chester, R. (2000). Marine geochemistry. Malden: Blackwell Science.

    Google Scholar 

  • De Souza, M. M. C., Pestana, M. H. D., & Lacerda, L. D. (1986). Geochamical partitioning of heavy metals in sediments of three estuaries along the coast of Rio de Jeniro (Brazil). The Science of the Total Environ, 58, 63–72.

    Article  Google Scholar 

  • Fernandes, H. M., Bidone, E. D., Veiga, L. H. S., & Patchineelam, S. R. (1994). Heavy metal pollution assessment in the coastal lagoons of Jacarepagua, Rio de Janeiro, Brazil. Environmental Pollution, 85, 259–264.

    Article  CAS  Google Scholar 

  • Forstner, U., & Wittmann, G. T. W. (1981). Metal pollution in the aquatic environment (2nd ed.). Berlin: Springer.

    Book  Google Scholar 

  • Ip, C. C. M., Li, X. D., Zhang, G., Wai, O. W. H., & Li, Y. S. (2007). Trace metal distribution in sediments of the Pearl River Estuary and the surrounding coastal area, South China. Environmental Pollution, 14, 311–323.

    Article  Google Scholar 

  • Irving, H. M. N. H. & Williams, R. J. P. (1953). The stability of transition-metal complexes, Journal of the Chemical Society 3192–3210.

  • Jain, C. K. (2004). Metal fractionation study on bed sediments of river Yamuna, India. Water Research, 38, 569–578.

    Article  CAS  Google Scholar 

  • Jain, S. K., Agarwal, P. K., & Singh, V. P. (2007). Hydrology and water resources of India. Springer, Heidelberg. ISBN: 13978-1-4020-5180-7 (e-Book), pp. 622–625.

  • Jenne, E. A. (1968). Controls of Mn, Fe, Co, Ni, Cu, and Zn concentration in soils and water. The significant role of hydrous Mn and Fe-oxide. American Chemical Society, Advances in Chemistry Series, 73, 337–387.

    Google Scholar 

  • Konhauser, K. O., Powel, M. A., Fyfe, W. S., Longstaffe, F. G., & Tripathy, S. (1997). Trace element geochemistry of river sediment, Orissa state, India. Journal of Hydrology, 193, 258–268.

    Article  CAS  Google Scholar 

  • Krupadam, R. J., Smita, P., & Wate, S. R. (2006). Geochemical fractionation of heavy metals in sediments of the Tapi estuary. Geochemical Journal, 40, 513–522.

    Article  CAS  Google Scholar 

  • Li, X. D., & Thornton, I. (1992). Multi-element contamination in soil and plant in the old mining area. Applied Geochemistry, 52, 51–56.

    Google Scholar 

  • Liu, C. W., Lin, K. H., & Kuo, Y. M. (2003). Application of factor analysis in the assessment of ground water quality in a blackfoot disease area in Taiwan. Science of the Total Environment, 313, 77–89.

    Article  CAS  Google Scholar 

  • Liu, C., Xu, J., Liu, C., Zhang, P., & Dai, M. (2009). Heavy metals in the surface sediments in Lanzhou Reach of Yellow River Chaina. Bulletin of Environmental Contamination and Toxicology, 82, 26–30.

    Article  CAS  Google Scholar 

  • Martin, J. M., & Meybeck, M. (1979). Elemental mass-balance of material carried by major world rivers. Marine Chemistry, 7, 173–206.

    Article  CAS  Google Scholar 

  • Modak, D. P., Singh, K. P., Chandra, H., & Ray, P. K. (1992). Mobile and bound forms of trace metals in sediments of the lower Ganges. Water Research, 26(11), 1541–1548.

    Article  CAS  Google Scholar 

  • Morrison, G. M. P. (1989). Trace element speciation: analytical methods and problems. In: G. E. Batley (Ed.), Trace Element Speciation: Analytical Methods and Problems (p. 343). Boca Raton, Florida: CRC Press.

  • Muller, G. U. (1979). Schwermetalle in den sediments des Rheins: Veranderungen seit 1971. Umschau in Wissenschaft und Technik, 79, 778–783.

    Google Scholar 

  • OPCB (Orissa Pollution Control Board). (2007). Water quality of Major Rivers of Orissa. pp-9–19

  • Pagnanelli, F., Moscardini, E., Giuliano, V., & Toro, L. (2004). Sequential extraction of heavy metals in river sediments of an abandoned pyrite mining area: pollution detection and affinity series. Environmental Pollution, 132, 189–201.

    Article  CAS  Google Scholar 

  • Panda, U. C., Rath, P., Sundaray, S. K., Majumdar, S., & Sahu, K. C. (2006). Study of geochemical association of some trace metals in the sediments of Chilika lagoon—a multivariate statistical approach. Environmental Monitoring and Assessment, 123, 125–150.

    Article  CAS  Google Scholar 

  • Panda, U. C., Rath, P., Bramha, S. N., & Sahu, K. C. (2010). Application of factor analysis in geochemical speciation of heavy metals in the sediments of a lake system—Chilika (India): a case study. Journal of Coastal Research, 26(5), 860–868.

    Article  CAS  Google Scholar 

  • Perin, G., Craboledda, L., Lucchese, M., Cirillo, R., Dotta, L. & Zanetta, M. L. (1985). Heavy metal speciation in the sediments of northern Adriatic Sea. A new approach for environmental toxicity determination. In: T. D. Lakkas (ed.) Heavy metals in the environment. Edinburg: CEP Consultants.

  • Ramesh, R., Subramanian, V., & Van Grieken, R. (1990). Heavy metal distribution in sediments of Krishna river basin, India. Environmental Geology Water Science, 15, 207–216.

    Article  CAS  Google Scholar 

  • Rath, P., Panda, U. C., Bhatta, D., & Sahoo, B. N. (2005). Environmental quantification of heavy metals in the sediments of Brahmani and Nandira rivers Orissa, India. Journal of Geological Society of India, 65, 487–492.

    CAS  Google Scholar 

  • Rath, P., Panda, U. C., Bhatta, D., & Sahu, K. C. (2009). Use of sequential leaching, mineralogy, morphology and multivariate statistical technique for quantifying metal pollution in highly polluted aquatic sediments—a case study: Brahmani Nandira rivers, India. Journal of Hazardous Materials, 163, 632–644.

    Article  CAS  Google Scholar 

  • Ray, A. K., Tripathi, S. C., Patra, S., & Sharma, V. V. (2006). Assessment of Godavary estuarine mangrove ecosystem through trace metal studies. Environmental International, 32, 219–223.

    Article  CAS  Google Scholar 

  • Sarin, M. M., Borole, D. V., & Krishnaswamy, S. (1979). Geochemistry of sediments from the Bay of Bengal. Proceedings of the Indian Academy of Science, 88, 131–154.

    Article  Google Scholar 

  • Schoer, J. U., Hong, Y. T., & Forstner, U. (1983). Variation of chemical forms Fe, Mn and Zn in suspended sediments from Elbe and Weser rivers during estuarine mixing. Environmental Technology Letters, 4(6), 277–282.

    Article  CAS  Google Scholar 

  • Shajan, K. P. (2001). Geochemistry of bottom sediments from a river–estuary-shelf mixing zone on the southwest coast of India. Bulletin of the Geological Survey of Japan, 52, 371–382.

    CAS  Google Scholar 

  • Shaofeng, W., Yongfeng, J., Shuying, W., Xin, W., He, W., Zhixi, Z., & Bingzhu, L. (2010). Fractionation of heavy metals in shallow marine sediments from Jinzhou Bay, Chaina. Journal of Environmental Sciences, 22(1), 23–31.

    Article  Google Scholar 

  • Simeonov, V., Stratis, J. A., Samara, C., Zachariadis, G., Voutsa, D., Anthemidis, A., Sofoniou, M., & Kouimtzis, T. H. (2003). Assessment of surface water quality in northern Greece. Water Research, 37, 4119–4124.

    Article  CAS  Google Scholar 

  • Simex, S. A., & Helz, G. R. (1981). Regional geochemistry of trace elements in Chesapeake Bay sediments. Environmental Geology, 3, 315.

    Article  Google Scholar 

  • Singh, K. P., Malik, A., Mohan, D., & Sinha, S. (2004). Multivariate statistical techniques for the evaluation of spatial and temporal variation in water quality of Gomati river (India)—a case study. Water Research, 38, 3980–3992.

    Article  CAS  Google Scholar 

  • Singh, P. K., Mohan, D., Singh, V. K., & Malik, A. (2005). Studies on distribution and fraction of heavy metals in Gomti river sediments—a tributary of the Ganges, India. Journal of Hydrology, 312, 14–27.

    Article  CAS  Google Scholar 

  • Soto-Jimenez, M., & Peaz-Osuna. (2001). Cd, Cu, Pb and Zn in lagoonal sediments from Mazatlan Harbour (SE Gulf of California): bioavailability and geochemical fractioning. Bulletin of Environmental Contamination and Toxicology, 66, 350–556.

    Article  CAS  Google Scholar 

  • Subramanian, V. (1987). Environmental geochemistry of Indian river basins, a review. Journal of Geological Society of India, 29, 205–220.

    CAS  Google Scholar 

  • Subramanian, V., Van Grieken, R., & Vant Dack, L. (1987). Heavy metal distribution in the sediments of Ganges and Brahmaputra rivers. Environmental Geology and Water Sciences, 9, 93–103.

    Article  CAS  Google Scholar 

  • Subramanian, V., Jha, P. K., & Van Grieken, R. (1988). Heavy metals in the Ganges estuary. Marine Pollution Bulletin, 19, 290–293.

    Article  CAS  Google Scholar 

  • Sullivan, P., & Taylor, K. G. (2003). Sediment and porewater geochemistry in a metal contaminated estuary, Dulas Bay, Anglesey. Environmantal Geochemistry and Health, 25(1), 115–122.

    Article  CAS  Google Scholar 

  • Tessier, A., Campbell, P. G. C., & Bison, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7), 844–851.

    Article  CAS  Google Scholar 

  • Tipping, E., Lofts, S., & Lowlar, A. J. (1998). Modelling the chemical speciation of trace metals in the surface waters of the Humber system. Science of the Total Environment, 210–211, 63–77.

    Article  Google Scholar 

  • Tomlinson, D. C., Wilson, J. G., Harris, C. R., & Jeffrey, D. W. (1980). Problems in assessment of heavy metal levels in estuaries and the formation of a pollution index. Helgol Meeresunters, 33, 566–575.

    Article  Google Scholar 

  • Trivedy, R. K., & Goel, P. K. (1984). Chemical and Biological methods for water pollution studies. Karad: Env. Publ.

    Google Scholar 

  • Turner, A., Le Roux, S. M., & Millward, G. E. (2008). Adsorption of cadmium to iron and manganese oxides during estuarine mixing. Marine Chemistry, 108, 77–84.

    Article  CAS  Google Scholar 

  • Valdes, J., Vargas, G., Sifeddine, A., Ortlieb, L., & Guinez, M. (2005). Distribution and enrichment evaluation of heavy metals in Mejillones Bay (23° S), Northen Chile, geochemical and statistical approach. Marine Pollution Bulletin, 50(12), 1558–1568.

    Article  CAS  Google Scholar 

  • Weng, H. X., Zhu, Y. M., Qin, Y. C., Chen, J. U., & Chen, X. H. (2008). Accumulation discrepancy heavy metal and organic pollutants in three near-shore depositional environments, south eastern China. Journal of Asian Earth Sciences, 31, 522–532.

    Article  Google Scholar 

  • Willams, T. P., Bubb, J. M., & Lester, J. N. (1994). Metal accumulation within salt-marsh environments: a review. Marine Pollution Bulletin, 28, 277–290.

    Article  Google Scholar 

  • Yang, Z., Wang, Y., Shen, Z., Niu, J., & Tang, Z. (2009). Distribution and speciation of heavy metals in sediments from the mainstream, tributaries, and lakes of the Yangtze River catchment of Wuhan, China. Journal of Hazardous Materials, 166, 1186–1194.

    Article  CAS  Google Scholar 

  • Zhang, J., Huang, W. W., & Martin, J. M. (1998). Trace metal distribution in Huanghe (Yellow river). Estuarine, Coastal and Shelf Science, 26, 499–516.

    Article  Google Scholar 

  • Zhang, L. P., Ye, X., Feng, H., Jing, Y. H., Tong, O. Y., YU, X. T., Liang, R. Y., Gao, C. T., & CXhen, W. Q. (2007). Heavy metal contamination in western Xiamen bay sediments and its vicinity, China. Marine Pollution Bulletin, 54, 974–982.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasanta Rath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asa, S.C., Rath, P., Panda, U.C. et al. Application of sequential leaching, risk indices and multivariate statistics to evaluate heavy metal contamination of estuarine sediments: Dhamara Estuary, East Coast of India. Environ Monit Assess 185, 6719–6737 (2013). https://doi.org/10.1007/s10661-013-3060-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3060-3

Keywords

Navigation