Skip to main content
Log in

Source discrimination of heavy metals in sediment and water of To Lich River in Hanoi City using multivariate statistical approaches

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The concentrations of Mn, Fe, Ni, Cr, Cu, Pb, Zn, As, and Cd were determined to evaluate the level of contamination of To Lich River in Hanoi City. All metal concentrations in 0–10-cm water samples, except Mn, were lower than the maximum permitted concentration for irrigation water standard. Meanwhile, concentrations of As, Cd, and Zn in 0–30-cm sediments were likely to have adverse effects on agriculture and aquatic life. Sediment pollution assessment was undertaken using enrichment factor and geoaccumulation index (I geo). The I geo results indicated that the sediment was not polluted with Cr, Mn, Fe, and Ni, and the pollution level increased in the order of Cu < Pb < Zn < As < Cd. Meanwhile, significant enrichment was shown for Cd, As, Zn, and Pb. Cluster and principal component analyses suggest that As and Mn in sediment were derived from both lithogenic and anthropogenic sources, while Cu, Pb, Zn, Cr, Cd, and Ni originated from anthropogenic sources such as vehicular fumes for Pb and metallic discharge from industrial sources and fertilizer application for other metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adaikpoh, E. O., Nwajei, G. E., & Ogala, J. E. (2005). Heavy metals concentrations in coal and sediments from River Ekulu in Enugu, Coal City of Nigeria. Journal of Applied Sciences and Environmental Management, 9, 5–8.

    Google Scholar 

  • Akoto, O., Bruce, T. N., & Darko, G. (2008). Heavy metals pollution profiles in streams serving the Owabi reservoir. African Journal of Environmental Science and Technology, 2, 354–359.

    Google Scholar 

  • Calmano, W., Ahlf, W., & Forstner, U. (1990). Exchange of heavy metals between sediment components and water. In J. A. C. Broekaert, Güçer, & F. Ş. Adams (Eds.), Metal speciation in the environment. NATO ASI Series, vol. G 23 (NATO ASI Series, pp. 503–522). Berlin: Springer.

    Chapter  Google Scholar 

  • Casado-Martinez, M. C., Smith, B. D., DelValls, T. A., Luoma, S. N., & Rainbowa, P. S. (2009). Biodynamic modelling and the prediction of accumulated trace metal concentrations in the olychaete Arenicola marina. Environmental Pollution, 114, 2743–2750.

    Article  Google Scholar 

  • Cattell, R. B., & Jaspers, J. (1967). A general plasmode (no. 30-10-5-2) for factor analytic exercises and research. Multivariate Behavioral Research Monographs, 67, 1–212.

    Google Scholar 

  • CENMA. (2008). Hanoi Centre for Environmental and Natural Resources Monitoring and Analysis. Monitoring report of water quality in drainage rivers and lakes in Hanoi, Vietnam.

  • Chen, K. P., Jiao, J. J., Huang, J. M., & Huang, R. Q. (2007). Multivariate statistical evaluation of trace elements in groundwater in a coastal area in Shenzhen, China. Environmental Pollution, 147, 771–780.

    Article  CAS  Google Scholar 

  • Chung, C. Y., Chen, J. J., Lee, C. G., Chiu, C. Y., Lai, W. L., & Liao, S. W. (2011). Integrated estuary management for diffused sediment pollution in Dapeng Bay and neighboring rivers (Taiwan). Environmental Monitoring and Assessment, 173, 499–517.

    Article  CAS  Google Scholar 

  • Facchinelli, A., Aacchi, E., & Mallen, L. (2001). Multivariate statistical and GIS-based approach to identify heavy metal courses in soils. Environmental Pollution, 114, 313–324.

    Article  CAS  Google Scholar 

  • Fang, T. H., & Hong, E. (1999). Mechanisms influencing the spatial distribution of trace metals in surficial sediments off the south-western Taiwan. Marine Pollution Bulletin, 38, 1026–1037.

    Article  CAS  Google Scholar 

  • Gibbs, R. J. (1973). Mechanisms of trace metal transport in rivers. Science, 180, 71–73.

    Article  CAS  Google Scholar 

  • Ho, T. L. T., & Egashira, K. (2000). Heavy metal characterization of river sediment in Hanoi, Vietnam. Communications in Soil Science and Plant Analysis, 31, 2901–2916.

    Article  CAS  Google Scholar 

  • Japan Environmental Sanitation Center. (2005). Material flows of toxic substances. http://www.jesc.or.jp/environmentS/report/study/pdf/01-06.pdf. Accessed 18 July 2012 (in Japanese).

  • Jones, B., & Turki, A. (1997). Distribution and speciation of heavy metals in surficial sediments from the Tees Estuary, north-east England. Marine Pollution Bulletin, 34, 768–779.

    Article  CAS  Google Scholar 

  • Kikuchi, T., Hai, H. T., & Tanaka, S. (2009). Characterization of heavy metal pollution in river sediment of Hanoi city and its downstream area by multivariate analyses. Desalination and Water Treatment, 4, 240–247.

    Article  CAS  Google Scholar 

  • Li, S., & Zhang, Q. (2010). Spatial characterization of dissolved trace elements and heavy metals in the upper Han River (China) using multivariate statistical techniques. Journal of Hazardous Materials, 176, 579–588.

    Article  CAS  Google Scholar 

  • Loska, K., & Wiechula, D. (2003). Application of principal component analysis for the estimation of source of heavy metal contamination in surface sediments from the Rybnik Reservoir. Chemosphere, 51, 723–733.

    Article  CAS  Google Scholar 

  • MacDonald, D. D., Ingersoll, C. G., & Berger, T. A. (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination and Toxicology, 39, 20–31.

    Article  CAS  Google Scholar 

  • Macklin, M. G., Brewer, P. A., Hudson-Edwards, K. A., Bird, G., Coulthard, T. J., Dennis, I. A., et al. (2006). A geomorphological approach to the management of rivers contaminated by metal mining. Geomorphology, 79, 423–447.

    Article  Google Scholar 

  • Marcus, W. A. (1989). Regulating contaminated sediments in aquatic environments: a hydrologic perspective. Environmental Management, 13, 703–713.

    Article  Google Scholar 

  • Martin, C. W. (2000). Heavy metal trends in floodplain sediments and valley fill, River Lahn, Germany. Catena, 39, 53–68.

    Article  CAS  Google Scholar 

  • Micó, C., Recatalá, L., Peris, M., & Sánchez, J. (2006). Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Chemosphere, 65, 863–872.

    Article  Google Scholar 

  • Mucha, A. P., Vasconcelos, M. T. S. D., & Bordalo, A. A. (2003). Macrobenthic community in the Doura estuary: relations with trace metals and natural sediment characteristics. Environmental Pollution, 121, 169–180.

    Article  CAS  Google Scholar 

  • Müller, G. (1981). Die Schwermetallbelastung der sedimente des Neckars und seiner NebenFlusse: eine Bestandsaufnahme. Chemical Zeitung, 105, 157–164.

    Google Scholar 

  • Nguyen, T. L. H., Ohtsubo, M., Li, L. Y., & Higashi, T. (2007). Heavy metal pollution of the To Lich and Kim Nguu river in Hanoi city and the industrial source of the pollutants. Journal of the Faculty of Agriculture Kyushu University, 52, 141–146.

    CAS  Google Scholar 

  • Nouri, J., Mahvi, A. H., Jahed, G. R., & Babaei, A. A. (2008). Regional distribution pattern of groundwater heavy metals resulting from agricultural activities. Environmental Geology, 55, 1337–1343.

    Article  CAS  Google Scholar 

  • Olivares-Rieumont, S., de la Rosa, D., Lima, L., Graham, D. W., D' Alessandro, K., Borroto, J., et al. (2005). Assessment of heavy metal levels in Almendares River sediments—Havana City, Cuba. Water Research, 39, 3945–3953.

    Article  CAS  Google Scholar 

  • Pekey, H. (2006a). Heavy metal pollution assessment in sediments of Izmit Bay, Turkey. Environmental Monitoring and Assessment, 123, 219–231.

    Article  CAS  Google Scholar 

  • Pekey, H. (2006b). The distribution and sources of heavy metals in Izmit Bay surface sediments affected by a polluted stream. Marine Pollution Bulletin, 52, 1197–1208.

    Article  CAS  Google Scholar 

  • Reza, R., & Singh, G. (2010). Heavy metal contamination and its indexing approach for river water. International journal of Environmental Science and Technology, 7, 785–792.

    CAS  Google Scholar 

  • Sakan, S. M., Djordjevic, D. S., Manojlovic, D. D., & Polic, P. S. (2009). Assessment of heavy metal pollutants accumulation in the Tisza River sediments. Journal of Environmental Management, 90, 3382–3390.

    Article  CAS  Google Scholar 

  • Salomons, W., & Förstner, U. (1984). Metals in the hydrocycle. Berlin: Springer.

    Book  Google Scholar 

  • Schiff, K. C., & Weisberg, S. B. (1999). Iron as a reference element for determining trace metal enrichment in Southern California coast shelf sediments. Marine Environmental Research, 48, 161–176.

    Article  CAS  Google Scholar 

  • Seshan, B. R. R., Natesan, U., & Deepthi, K. (2010). Geochemical and statistical approach for evaluation of heavy metal pollution in core sediments in southeast coast of India. International journal of Environmental Science and Technology, 7, 291–306.

    CAS  Google Scholar 

  • Sharma, S. (1996). Applied multivariate techniques. New York: Wiley.

    Google Scholar 

  • Simex, S. A., & Helz, G. R. (1981). Regional geochemistry of trace elements in Chesapeake Bay. Environmental Geology, 3, 315–323.

    Article  Google Scholar 

  • Singh, M., Ansari, A. A., Müller, G., & Singh, B. I. (1997). Heavy metals in freshly deposited sediments of the Gomati River (a tributary of the Ganga River): effects of human activities. Environmental Geology, 29, 246–252.

    Article  CAS  Google Scholar 

  • Singh, K. P., Malik, A., Sinha, S., Singh, V. K., & Murthy, R. C. (2005). Estimation of source of heavy metal contamination in sediments of Gomti River (India) using principal component analysis. Water, Air, and Soil Pollution, 166, 321–341.

    Article  CAS  Google Scholar 

  • Soares, H. M. V. M., Boaventura, R. A. R., Machado, A. A. S. C., & Esteves da Silva, J. C. G. (1999). Sediments as monitors of heavy metal contamination in the Ave River basin (Portugal): multivariate analysis of data. Environmental Pollution, 105, 311–323.

    Article  CAS  Google Scholar 

  • Steve, P. M. (1994). Effect of heavy metals from sewage sludge on soil microbes in agricultural ecosystems. In S. M. Ross (Ed.), Toxic metals in soil–plant system (pp. 247–274). Chichester: Wiley.

    Google Scholar 

  • Tam, N. F. Y., & Wong, Y. S. (2000). Spatial variation of heavy metals in surface sediments of Hong Kong mangrove swamps. Environmental Pollution, 110, 195–205.

    Article  CAS  Google Scholar 

  • Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of the elements in some major units of the earth's crust. Geological Society of America Bulletin, 72, 175–192.

    Article  CAS  Google Scholar 

  • USEPA. (2006). National recommended water quality criteria. United States Environmental Protection Agency. Office of Water, Office of Science and Technology.

  • USEPA. (2007). Method 3051A: microwave assisted acid dissolution of sediments, sludges, soils, and oils. Revision 1. Washington: United States Environmental Protection Agency.

    Google Scholar 

  • Varol, M., & Sen, B. (2012). Assessment of nutrient and heavy metal contamination in surface water and sediment of the upper Tigris River, Turkey. Catena, 92, 1–10.

    Article  CAS  Google Scholar 

  • Ward, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58, 236–244.

    Article  Google Scholar 

  • Welch, A. H., & Lico, M. S. (1998). Factors controlling As and U in shallow ground water, southern Carson Desert, Nevada. Applied Geochemistry, 13, 521–539.

    Article  CAS  Google Scholar 

  • WHO. (2006). Guidelines for the safe use of wastewater, excreta and greywater: volume II: wastewater use in agriculture.

  • Wright, P., & Mason, C. F. (1999). Spatial and seasonal variation in heavy metals in the sediments and biota of two adjacent estuaries, the Orwell and the Stour, in eastern England. Science of the Total Environment, 226, 139–156.

    Article  CAS  Google Scholar 

  • Zhou, J., Ma, D., Pan, J., Nie, W., & Kai, W. (2008). Application of multivariate statistical approach to identify heavy metal sources in sediment and waters: a case study in Yangzhong, China. Environmental Geology, 54, 373–380.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Comments from the anonymous reviewers are gratefully acknowledged. This study was financially supported by Kyoto University, Global COE Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Thi Thuong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thuong, N.T., Yoneda, M., Ikegami, M. et al. Source discrimination of heavy metals in sediment and water of To Lich River in Hanoi City using multivariate statistical approaches. Environ Monit Assess 185, 8065–8075 (2013). https://doi.org/10.1007/s10661-013-3155-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3155-x

Keywords

Navigation