Skip to main content

Advertisement

Log in

Community structure and coral status across reef fishing intensity gradients in Palk Bay reef, southeast coast of India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Coral reef fishes are exploited without the knowledge of their sustainability and their possible effect in altering the community structure of a coral reef ecosystem. Alteration of the community structure could cause a decline in the health of coral reefs and its services. We documented the coral community structure, status of live corals and reef fish assemblages in Palk Bay at the reef fishing hotspots and its nearby reef area with minimum fishing pressure and compared it with a control reef area where reef fishing was banned for more than two decades. The comparison was based on the percent cover of different forms of live corals, their diversity and the density and diversity of reef fishes. The reef fish stock in the reef fishing hotspots and its neighbouring reef was lower by 61 and 38 %, respectively compared to the control reef. The herbivore fish Scarus ghobban and Siganus javus were exploited at a rate of 250 and 105 kg month−1 fishermen−1, respectively, relatively high comparing the small reef area. Live and dead corals colonized by turf algae were predominant in both the reef fishing hotspots and its nearby coral ecosystems. The percent cover of healthy live corals and live corals colonized by turf algae was <10 and >80 %, respectively, in the intensively fished coral ecosystems. The corals were less diverse and the massive Porites and Favia colonies were abundant in the intensive reef fishing sites. Results of this study suggest that the impact of reef fish exploitation was not solely restricted to the intensively fished reefs, but also to the nearby reefs which play a critical role in the resilience of degraded reef ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adam, T. C., Schmitt, R. J., Holbrook, S. J., Brooks, A. J., Edmunds, P. J., Carpenter, R. C., et al. (2011). Herbivory, connectivity and ecosystem resilience: response of a coral reef to a large scale perturbation. PloS One, 6(8), e23717.

    Article  CAS  Google Scholar 

  • Allen, G., Steene, R., Humann, P., Deloach, N. (2003). Reef fish identification. California: Tropical pacific, New world publications, Jacksonville, Florida and Odyssey publications, El cajon.

  • Alongi, D. M. (2008). Mangrove forests: resilience, protection from tsunamis and responses to global climate change. Estuarine Coastal Shelf Science, 76(1), 1–13.

    Article  Google Scholar 

  • Bellwood, D. R. (1994). A phylogenetic study of the parrotfishes family Scaridae (Pisces: Labroidei), with a revision of genera. Records of the Australian Museum, Supplement, 20, 1–86.

    Article  Google Scholar 

  • Bellwood, D. R., & Choat, J. H. (1990). A functional analysis of grazing in parrot fishes (family Scaridae): the ecological implications. Environmental Biology of Fishes, 28(1–4), 189–214.

    Google Scholar 

  • Bender, D., Diaz-Pullido, G., & Dove, S. (2012). Effects of macroalgae on corals recovering from disturbance. Journal of Experimental Marine Biology, 429, 15–19.

    Article  Google Scholar 

  • Berkelmans, R., & Van Oppen, M. J. (2006). The role o zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’ or coral reefs in an era of climate change. Proceedings of the Royal Society B: Biological Sciences, 273(1599), 2305–2312.

    Article  Google Scholar 

  • Birrell, C. L., McCook, M. J., & Eillis, B. L. (2005). Effects of algal turfs and sediment on coral settlement. Marine Pollution Bulletin, 51(1), 408–414.

    Article  CAS  Google Scholar 

  • Buddemeier, R. W., & Fautin, D. G. (1993). Coral bleaching as an adaptive mechanism. Bioscience, 43(5), 320–326.

    Article  Google Scholar 

  • Buddemeier, R. W., Baker, A. C., Fautin, D. G., & Jacobs, J. R. (2004). The adaptive hypothesis of bleaching. Coral Health and Disease, 427–444.

  • Burke, L., Reytar, K., Spalding, M., & Perry, A. (2011). Reefs at risk Revisited (p. 80). Washington, DC: World resources Institute.

    Google Scholar 

  • Burkepile, D. E., & Hay, M. E. (2008). Herbivore species richness and feeding complementarity affect community structure and function on a coral reef. Proceedings of the National Academy of Sciences, 105(42), 16201–16206.

    Article  CAS  Google Scholar 

  • Cetz-Navarro, N. P., Espinoza-Avalos, J., Hernández-Arana, H. A., & Carricart-Ganivet, J. P. (2013). Biological responses of the coral Montastraea annularis to the removal of filamentous turf algae. PloS One, 8(1), e54810.

    Article  CAS  Google Scholar 

  • Dayton, P. K., Thrush, S. F., Agardy, M. T., & Hofman, R. J. (1995). Environmental effects of marine fishing. Aquatic Conservation: Marine and Freshwater Ecosystems, 5(3), 205–232.

    Article  Google Scholar 

  • Diaz-Pullido, G., McCook, L. J., Dove, S., Berkelmans, R., Roff, G., Kline, D. I., et al. (2009). Doom and boom on a resilient reef: climate change, algal overgrowth and coral recovery. PloS One, 4(4), e5239.

    Article  Google Scholar 

  • Done, T. J., Ogden, J. C., Wiebe, W. J., Rosen, B. R., & Schulze, E. D. (1996). Biodiversity and ecosystem function of coral reefs. In H. A. Mooney, J. H. Cushman, E. Medina, & O. E. Sala (Eds.), Functional roles of biodiversity: a global perspective (p. 493). Chichester: Wiley.

    Google Scholar 

  • Dulvy, N. K., Freckleton, R. P., & Polunin, N. V. C. (2004). Coral reef cascades and the indirect effects of predator removal by exploitation. Ecology Letters, 7(5), 410–416.

    Article  Google Scholar 

  • English, S., Wilkinson, C., & Baker, V. (1997). Survey manual for tropical resources. Townsville: Australian Institute of Marine sciences.

    Google Scholar 

  • Geesey, G. G., Alexander, G. V., Bray, R. N., & Miller, A. C. (1984). Fish fecal pellets are a source of minerals for inshore reef communities. Marine Ecology Progress Series, Olendorf, 15(1), 19–25.

    Article  Google Scholar 

  • Graham, N. J., Chabanet, P., Evans, R. D., Jennings, S., Letourneur, Y., MacNeil, M. A., et al. (2011). Extinction vulnerability of coral reef fishes. Ecology Letters, 14(4), 341–348.

    Article  Google Scholar 

  • Hughes, T. P. (1989). Community structure and diversity of coral reefs: the role of history. Ecology, 70(1), 275–279.

    Article  Google Scholar 

  • Hughes, T. P. (1994). Catastrophes, phas-shifts, and large-scale degradation of a Caribbean coral reef. Science, 265(5178), 1547–1551.

  • Hughes, T. P., Baird, A. H., Bellwood, D. R., Card, M., Connolly, S. R., Folke, C., et al. (2003). Climate change, human impacts, and the resilience of coral reefs. Science, 301(5635), 929–933.

    Article  CAS  Google Scholar 

  • Hughes, T. P., Rodrigues, M. J., Bellwood, D. R., Ceccarelli, D., Hoegh-Guldberg, O., McCook, L., et al. (2007). Phase shifts, herbivory, and the resilience of coral reefs to climate change. Current Biology, 17(4), 360–365.

    Article  CAS  Google Scholar 

  • Jennings, S., & Wilson, R. W. (2009). Fishing impacts on the marine inorganic carbon cycle. Journal of Applied Ecology, 46(5), 976–982.

    Article  CAS  Google Scholar 

  • Jompa, J., & McCook, L. J. (2003). Coral–algal competition: macroalgae with different properties have different effects on corals. Marine Ecology Progress Series, 258, 87–95.

    Article  Google Scholar 

  • Kinzie, R. A., Takayama, M., Santos, S. R., & Coffroth, M. A. (2001). The adaptive bleaching hypothesis: experimental tests of critical assumptions. The Biology Bulletin, 200(1), 51–58.

    Article  Google Scholar 

  • Kuffner, I. B., Walters, L. J., Becerro, M. A., Paul, V. J., Ritson-Williams, R., & Beach, K. S. (2006). Inhibition of coral recruitment by macroalgae and cyanobacteria. Marine Ecology Progress Series, 323, 107–117.

    Article  Google Scholar 

  • Lirman, D. (2001). Competition between macroalgae and corals: effects of herbivore exclusion and increased algal biomass on coral survivorship and growth. Coral Reefs, 19(4), 392–399.

    Article  Google Scholar 

  • Lokrantz, J., Nystrom, M., Norstrom, A. V., Folke, C., & Cinner, J. E. (2009). Impacts of artisanal fishing on key functional groups and the potential vulnerability of coral reefs. Environmental Conservation, 36(4), 327–337.

    Article  Google Scholar 

  • Lundberg, J., & Moberg, F. (2003). Mobile link organisms and ecosystem functioning: implications for ecosystem resilience and management. Ecosystems, 6(1), 87–98.

    Article  Google Scholar 

  • McClanahan, T. R. (1995). A coral reef ecosystem-fisheries model: impacts of fishing intensity and catch selection on reef structure and processes. Ecological Modelling, 80(1), 1–19.

    Article  CAS  Google Scholar 

  • McClanahan, T. R., & Cinner, J. E. (2008). A framework for adaptive gear and ecosystem-based management in artisanal coral reef fishery of Papua New Guinea. Aquatic Conservation, 18, 493–507.

    Article  Google Scholar 

  • McClanahan, T. R., & Shafir, S. H. (1990). Causes and consequences of sea urchin abundance and diversity in Kenyan coral reef lagoons. Oceologia, 83(3), 362–370.

    Google Scholar 

  • McClanahan, T. R., Marnane, M. J., Cinner, J. E., & Kiene, W. E. (2006). A comparison of marine protected areas and alternative approaches to coral reef management. Current Biology, 16(14), 1408–1413.

    Article  CAS  Google Scholar 

  • McCook, L. J., Jompa, J., & Diaz-Pullido, G. (2001). Competition between corals and algae on coral reefs: a review of evidence and mechanisms. Coral Reefs, 19(4), 400–417.

    Article  Google Scholar 

  • McManus, J. W., & Polsenberg, J. F. (2004). Coral–algal phase shifts on coral reefs: ecological and environmental aspects. Progress in Oceanography, 60(2), 263–279.

    Article  Google Scholar 

  • Meyer, J. L., & Schultz, E. T. (1985). Migrating haemulid fishes as a source of nutrients and organic matter on coral reefs. Limnology and Oceanography, 30(1), 146–156.

    Article  Google Scholar 

  • Miller, M. W., Hay, M. E., Miller, S. L., Malone, D., Sotka, E. E., & Szmant, A. M. (1999). Effects of nutrients versus herbivores on reef algae: a new method for manipulating nutrients on coral reefs. Limnology and Oceanography, 44(8), 1847–1861.

    Article  Google Scholar 

  • Moberg, F., & Folke, C. (1999). Ecological goods and services of coral reef ecosystems. Ecological Economics, 29(2), 215–233.

    Article  Google Scholar 

  • Mora, C., Andrefouet, S., Costello, M. J., Kranenburg, C., Rollo, A., Veron, J., et al. (2006). Enhanced: coral reefs and the global network of marine protected areas. Science, 1125295(1750), 312.

    Google Scholar 

  • Mumby, P. J. (2006). The impact of exploiting grazers (Scaride) on the dynamics of Caribbean coral reefs. Ecological Applications, 16(2), 747–769.

    Article  Google Scholar 

  • Mumby, P. J., & Hastings, A. (2008). The impact of ecosystem connectivity on coral reef resilience. Journal of Applied Ecology, 45(3), 854–862.

    Article  Google Scholar 

  • Mumby, P. J., Hastings, A., & Edwards, H. J. (2007). Thresholds and the resilience of Caribbean coral reefs. Nature, 450(7166), 98–101.

    Article  CAS  Google Scholar 

  • Nystrom, M., & Folke, C. (2001). Spatial resilience of coral reefs. Ecosystems, 4(5), 406–417.

    Article  Google Scholar 

  • Nystrom, M., Graham, N. A. J., Lokrantz, J., & Norstrom, A. V. (2008). Capturing the cornerstones of coral reef resilience: linking theory to practice. Coral Reefs, 27(4), 795–809.

    Article  Google Scholar 

  • Ogden, J. C., & Quinn, T. P. (1984). Migration in coral reef fishes: ecological significance and orientation mechanisms. In J. D. McCleave, G. P. Arnold, J. J. Dodson, & W. H. Neill (Eds.), Mechanisms of migration in fishes (pp. 293–308). New York: Plenum.

    Chapter  Google Scholar 

  • Olds, A. D., Pitt, K. A., Maxwell, P. S., & Connolly, R. M. (2012). Synergistic effects of reserves and connectivity on ecological resilience. Journal of Applied Ecology, 49(6), 1195–1203.

    Article  Google Scholar 

  • Peterson, C. H., & Lubchencho, J. (1997). On the value of marine ecosystems to society. In G. C. Daily (Ed.), Nature services societal dependence on natural ecosystems (pp. 1077–1194). New York: Island Press.

    Google Scholar 

  • Rao, D. V. (2004). Guide to reef fishes of Andaman and Nicobar Islands. Kolkata: Zoological survey of India.

    Google Scholar 

  • Rasher, D. B., Stout, P., Engel, S., Kubanek, J., & Hay, M. E. (2011). Macroalgal terpenes function as allelopathic agents against reef corals. Proceedings of the National Academy of Sciences of the United States of America, 108(43), 17726–17731.

    Article  CAS  Google Scholar 

  • Rau, G. H., McLeod, E. L., & Hoegh-Guldberg, O. (2012). The need for new ocean conservation strategies in a high-carbon dioxide world. Nature Climate Change, 2(10), 720–724.

    Article  Google Scholar 

  • Ravindran, J., Kannapiran, E., Manikandan, B., Mani Murali, R., & Joseph, A. (2012). Bleaching and secondary threats on the corals of Palk Bay: a survey and proactive conservation needs. Indian Journal of Geo-Marine Sciences, 41(1), 19–26.

    Google Scholar 

  • Rogers, C. S. (1990). Responses of coral reefs and reef organisms to sedimentation. Marine Ecology Progress Series, Olendorf, 62(1), 185–202.

    Article  Google Scholar 

  • Smith, J. E., Shaw, M., Edwards, R. A., Obura, D., Pantos, O., Sala, E., et al. (2006). Indirect effects of algae on coral: algae-mediated microbe induced coral mortality. Ecology Letters, 9(7), 835–845.

    Article  Google Scholar 

  • Strong, A. E., Lucas, E. Y., Eakin, C. M., Rauenzahn, J., Chang, P., Ignatov, A., et al. (2012). Enhanced satellite remote sensing for coral reef management: Next decade. Proceedings of 12th International Coral Reef Symposium, 5A, 9.

  • Tanner, J. E. (1995). Competition between Scleractinian corals and macroalgae: an experimental investigation of coral growth, survival and reproduction. Journal of Experimental Marine Biology and Ecology, 190(2), 151–168.

    Article  Google Scholar 

  • UNEP. (2004). People and reefs: successes and challenges in the management of coral reef marine protected areas. UNEP Regional seas reports and Studies No. 176.

  • Veron, J. E. N., & Smith, M. S. (2000). Corals of the world. Townsville: Australian Institute of Marine Science.

    Google Scholar 

  • Waycott, M., Duarte, C. M., Carruthers, T. J. B., Orth, R. J., Dennison, W. C., Olyarnik, S., et al. (2009). Accelerating loss of sea grasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 106(30), 12377–12381.

    Article  CAS  Google Scholar 

  • Wenger, A. S., & McCormick, M. I. (2013). Determining trigger values of suspended sediment for behavioral changes in a coral reef fish. Marine Pollution Bulletin, 70(1), 73–80.

    Article  CAS  Google Scholar 

  • Wenger, A., McCormick, M., Endo, G., McLeod, I., Kroon, F., Jones, G. (2014). Suspended sediment prolongs larval development in a coral reef fish. The Journal of experimental biology, 217(Pt 7), 1122–1128.

  • Wilkinson, C. (2002). Status of Coral Reefs of the World. Townsville: Australian Institute of Marine Science.

    Google Scholar 

  • Wilkinson, C. (2008). Status of the coral reefs of the world: 2008. Townsville: Global coral reef monitoring network and reef and rainforest research center.

    Google Scholar 

  • Wilkinson, C., & Salvat, B. (2012). Coastal resource degradation in the tropics: does the tragedy of the commons apply for coral reefs, mangrove forests and seagrass beds. Marine Pollution Bulletin, 64(6), 1096–1105.

    Article  CAS  Google Scholar 

  • Wilson, J. J., Marimuthu, N., & Kumaraguru, A. K. (2005). Sedimentation of silt in the coral reef environment of Palk Bay, India. Journal of Marine Biological Association of India, 47, 83–87.

    Google Scholar 

  • Wilson, S. K., Fisher, R., Pratchett, M. S., Graham, N. A. J., Dulvy, N. K., Turner, R. A., et al. (2008). Exploitation and habitat degradation as agents of change within coral reef fish communities. Global Change Biology, 14(12), 2796–2809.

    Article  Google Scholar 

  • Wilson, S. K., Babcock, R. C., Fisher, R., Holmes, T. H., Moore, J. A. Y., & Thomson, D. P. (2012). Relative and combined effects of habitat and fishing on reef fish communities across a limited fishing gradient at Ningaloo. Marine Environmental Research, 81, 1–11.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The first author acknowledge the Department of Science and Technology, Government of India, for the award of INSPIRE fellowship and Mr. Kathiresan for his assistance during field work. Special thanks to Dr. Rajkumar Rajan, Scientist, Zoological Survey of India for his help in identifying the corals. We thank the anonyomous reviewers for their comments and suggestions to improve the manuscript. NIO contribution number 5580.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ravindran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manikandan, B., Ravindran, J., Shrinivaasu, S. et al. Community structure and coral status across reef fishing intensity gradients in Palk Bay reef, southeast coast of India. Environ Monit Assess 186, 5989–6002 (2014). https://doi.org/10.1007/s10661-014-3835-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-014-3835-1

Keywords

Navigation