Skip to main content

Advertisement

Log in

The contribution of trees outside forests to national tree biomass and carbon stocks—a comparative study across three continents

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In contrast to forest trees, trees outside forests (TOF) often are not included in the national monitoring of tree resources. Consequently, data about this particular resource is rare, and available information is typically fragmented across the different institutions and stakeholders that deal with one or more of the various TOF types. Thus, even if information is available, it is difficult to aggregate data into overall national statistics. However, the National Forest Monitoring and Assessment (NFMA) programme of FAO offers a unique possibility to study TOF resources because TOF are integrated by default into the NFMA inventory design. We have analysed NFMA data from 11 countries across three continents. For six countries, we found that more than 10 % of the national above-ground tree biomass was actually accumulated outside forests. The highest value (73 %) was observed for Bangladesh (total forest cover 8.1 %, average biomass per hectare in forest 33.4 t ha−1) and the lowest (3 %) was observed for Zambia (total forest cover 63.9 %, average biomass per hectare in forest 32 t ha−1). Average TOF biomass stocks were estimated to be smaller than 10 t ha−1. However, given the large extent of non-forest areas, these stocks sum up to considerable quantities in many countries. There are good reasons to overcome sectoral boundaries and to extend national forest monitoring programmes on a more systematic basis that includes TOF. Such an approach, for example, would generate a more complete picture of the national tree biomass. In the context of climate change mitigation and adaptation, international climate mitigation programmes (e.g. Clean Development Mechanism and Reduced Emission from Deforestation and Degradation) focus on forest trees without considering the impact of TOF, a consideration this study finds crucial if accurate measurements of national tree biomass and carbon pools are required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmed, P. (2008). Trees outside forests (TOF): a case study of wood production and consumption in Haryana. International Forestry Review, 10(2), 165–172.

    Article  Google Scholar 

  • Alberto, D., & Elvir, J. (2005). Acumulación y fijación de carbono en biomasa aérea de Pinus oocarpa en bosques naturales de Cabañas, La Paz. TATASCAN, 17(12), 3–12.

    Google Scholar 

  • Atangana, A., Khasa, D., Chang, S., & Degrande, A. (2014). Agroforestry and the carbon market in the tropics. In Tropical agroforestry (pp. 353–365). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Auclair, D., Prinsley, R., & Davis, S. (2000). Trees on farms in industrialized countries: silvicultural, environmental and economic issues. In B. Krishnapillayet al. (Eds.), Forests and society: the role of research. Volume 1: sub-plenary sessions. XXI IUFRO World Congress (pp. 761–776). Kuala Lumpur.

  • Axelsson, A.-L., Ståhl, G., Söderberg, U., Petersson, H., Fridman, J., & Lundström, A. (2010). Sweden. In E. Tomppo, T. Gschwantner, M. Lawrence, & R. E. McRoberts (Eds.), National forest inventories (pp. 541–553). Heidelberg: Springer.

    Google Scholar 

  • Bellefontaine, R., Petit, S., Deleporte, P., & Bertault, J.-G. (2002). Trees outside forests. Towards better awareness. Rome: FAO.

    Google Scholar 

  • Bélouard, T., & Coulon, F. (2002). Trees outside forests: France. In R. Bellefontaine, S. Petit, P. Deleporte, & J.-G. Bertault (Eds.), Trees outside forests. Towards better awareness (pp. 149–156). Rome: FAO.

    Google Scholar 

  • Boffa, J. M. (2000). West African agroforestry parklands: keys to conservation and sustainable management. Unasylva, 200(51), 11–17.

    Google Scholar 

  • Brändli, U.-B. (Ed.). (2010). Schweizerisches Landesforstinventar. Ergebnisse der dritten Erhebung 2004–2006. Birmensdorf: WSL, BAFU.

    Google Scholar 

  • Breidenbach, J., Antón-Fernández, C., Petersson, H., McRoberts, R. E., & Astrup, R. (2014). Quantifying the model-related variability of biomass stock and change estimates in the Norwegian National Forest Inventory. Forest Science. doi:10.5849/forsci. 12-137.

    Google Scholar 

  • Brown, S. (1997). Estimating biomass and biomass change of tropical forests: a primer. Rome: FAO.

    Google Scholar 

  • Chave, J., Condit, R., Aguilar, S., Hernandez, A., Lao, S., & Perez, R. (2004). Error propagation and scaling for tropical forest biomass estimates. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. doi:10.1098/rstb.2003.1425.

    Google Scholar 

  • Chave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., Eamus, D., et al. (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia. doi:10.1007/s00442-005-0100-x.

    Google Scholar 

  • Chave, J., Muller-Landau, H. C., Baker, T. R., Easdale, T. A., ter Steege, H., & Webb, C. O. (2006). Regional and phylogenetic variation of wood density across 2456 neotropical tree species. Ecological Applications. doi:10.1890/1051-0761(2006)016[2356:RAPVOW]2.0.CO;2.

    Google Scholar 

  • Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., & Zanne, A. E. (2009). Towards a worldwide wood economics spectrum. Ecology Letters. doi:10.1111/j.1461-0248.2009.01285.x.

    Google Scholar 

  • Cochran, W. G. (1977). Sampling techniques. New York: Wiley.

    Google Scholar 

  • COST (2014). Action FP1001: improving data and information on the potential supply of wood resources: a European approach from Multisource National Forest Inventories (USEWOOD). http://www.cost.eu/COST_Actions/fps/Actions/FP1001. Accessed 15 October 2014.

  • De Foresta, H., Somarriba, E., Temu, A., Boulanger, D., Feuilly, H., & Gaulthier, M. (2013). Towards the assessment of trees outside of forests. Rome.

  • Djomo, A. N., Ibrahima, A., Saborowski, J., & Gravenhorst, G. (2010). Allometric equations for biomass estimations in Cameroon and pan moist tropical equations including biomass data from Africa. Forest Ecology and Management. doi:10.1016/j.foreco.2010.08.034.

    Google Scholar 

  • Ene, L. T., Næsset, E., Gobakken, T., Gregoire, T. G., Ståhl, G., & Nelson, R. (2012). Assessing the accuracy of regional LiDAR-based biomass estimation using a simulation approach. Remote Sensing of Environment. doi:10.1016/j.rse.2012.04.017.

    Google Scholar 

  • European Commission. (2011). Establishing rules for direct payments to farmers under support schemes within the framework of the common agricultural policy. Brussels: European Comission.

    Google Scholar 

  • FAO (1998). Asia-Pacific forestry towards 2010: report of the Asia-Pacific forestry sector outlook study. Rome.

  • FAO. (2001). Global ecological zoning for the Global Forest Resources Assessment 2000. Rome: FAO.

    Google Scholar 

  • FAO. (2010). Global Forest Resource Assessment 2010. Main report. Rome: FAO.

    Google Scholar 

  • FAO. (2012). National forest monitoring and assessment—manual for integrated field data collection. Version 3.0. Rome: FAO.

    Google Scholar 

  • FAO (2013). Support to forest monitoring and assessment: country projects. http://www.fao.org/forestry/fma/73410/en/. Accessed 11 February 2014.

  • Fayolle, A., Doucet, J.-L., Gillet, J.-F., Bourland, N., & Lejeune, P. (2013). Tree allometry in Central Africa: testing the validity of pantropical multi-species allometric equations for estimating biomass and carbon stocks. Forest Ecology and Management. doi:10.1016/j.foreco.2013.05.036.

    Google Scholar 

  • Feldpausch, T. R., Banin, L., Phillips, O. L., Baker, T. R., Lewis, S. L., Quesada, C. A., et al. (2011). Height-diameter allometry of tropical forest trees. Biogeosciences. doi:10.5194/bg-8-1081-2011.

    Google Scholar 

  • Feldpausch, T. R., Lloyd, J., Lewis, S. L., Brienen, R. J. W., Gloor, E., Monteagudo Mendoza, A., et al. (2012). Tree height integrated into pan-tropical forest biomass estimates. Biogeosciences Discussions. doi:10.5194/bgd-9-2567-2012.

    Google Scholar 

  • Fischer, C., Kleinn, C., Fehrmann, L., Fuchs, H., & Panferov, O. (2011). A national level forest resource assessment for Burkina Faso—a field based forest inventory in a semiarid environment combining small sample size with large observation plots. Forest Ecology and Management. doi:10.1016/j.foreco.2011.07.001.

    Google Scholar 

  • FSI. (2011). India state of forest report (p. 322). Dehradun: FSI.

    Google Scholar 

  • Gibbs, H. K., Brown, S., Niles, J. O., & Foley, J. A. (2007). Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environmental Research Letters. doi:10.1088/1748-9326/2/4/045023.

    Google Scholar 

  • Gibbs, H. K., Ruesch, A. S., Achard, F., Clayton, M. K., Holmgren, P., Ramankutty, N., & Foley, J. A. (2010). Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proceedings of the National Academy of Sciences of the United States of America. doi:10.1073/pnas.0910275107.

    Google Scholar 

  • Gregoire, T. G., & Valentine, H. T. (2008). Sampling startegies for natural resources and the environment. Boca Raton: Chapman & Hall/CRC.

    Google Scholar 

  • Herzog, F. (2000). The importance of perennial trees for the balance of northern European agricultural landscapes. Unasylva, 200(51), 42–48.

    Google Scholar 

  • Idol, T., Haggar, J., & Cox, L. (2011). Ecosystem services from smallholder forestry and agroforestry in the tropics. In W. B. Campbell & S. L. Ortiz (Eds.), Integrating agriculture, conservation and ecotourism: examples from the field (pp. 209–270). Dordrecht: Springer Netherlands.

    Chapter  Google Scholar 

  • IPCC. (2006). 2006 IPCC guidelines for national greenhouse gas inventories, prepared by the National Greenhouse Gas Inventories Programme. Japan: IGES.

    Google Scholar 

  • Kairé, M. (1999). La production ligneuse des jachères et son utilisation par l’homme au Sénégal. Aix-en-Prevence: Universite de Provence.

    Google Scholar 

  • Kleinn, C., Ramírez, C., Holmgren, P., Valverde, S. L., & Chavez, G. (2005). A national forest resources assessment for Costa Rica based on low intensity sampling. Forest Ecology and Management. doi:10.1016/j.foreco.2005.02.023.

    Google Scholar 

  • Kumar, B. M., Suman, J. G., Jamaludheen, V., & Suresh, T. K. (1998). Comparison of biomass production, tree allometry and nutrient use efficiency of multipurpose trees grown in woodlot and silvopastoral experiments in Kerala, India. Forest Ecology and Management. doi:10.1016/S0378-1127(98)00325-9.

    Google Scholar 

  • Kuyah, S., Dietz, J., Muthuri, C., Jamnadass, R., Mwangi, P., Coe, R., & Neufeldt, H. (2012). Allometric equations for estimating biomass in agricultural landscapes: I. Aboveground biomass. Agriculture, Ecosystems & Environment. doi:10.1016/j.agee.2012.05.011.

    Google Scholar 

  • Leakey, R. B. (2001). Win:win land use strategies for Africa : 2. Capturing economic and environmental benefits with multistrata agroforests. International Forestry Review, 3, 11–18.

    Google Scholar 

  • McGroddy, M. E., Daufresne, T., & Hedin, L. O. (2004). Scaling of C:N:P stoichiometry in forests worldwide: implications of terrestrial redfield-type ratios. Ecology. doi:10.1890/03-0351.

    Google Scholar 

  • McHale, M. R., Burke, I. C., Lefsky, M. A., Peper, P. J., & McPherson, E. G. (2009). Urban forest biomass estimates: is it important to use allometric relationships developed specifically for urban trees? Urban Ecosystems. doi:10.1007/s11252-009-0081-3.

    Google Scholar 

  • McPherson, E. G., Simpson, J. R., Xiao, Q., & Wu, C. (2011). Million trees Los Angeles canopy cover and benefit assessment. Landscape and Urban Planning. doi:10.1016/j.landurbplan.2010.08.011.

    Google Scholar 

  • Molto, Q., Rossi, V., & Blanc, L. (2013). Error propagation in biomass estimation in tropical forests. Methods in Ecology and Evolution. doi:10.1111/j.2041-210x.2012.00266.x.

    Google Scholar 

  • Nair, P. K. R. (2011). Carbon sequestration studies in agroforestry systems: a reality-check. Agroforestry Systems. doi:10.1007/s10457-011-9434-z.

    Google Scholar 

  • Nowak, D. J. (1994). Atmospheric carbon dioxide reduction by Chicago’s urban forest. In E. G. McPherson, D. J. Nowak, & R. A. Rowntree (Eds.), Chicago’s urban forest ecosystem: results of the Chicago Urban Forest Climate Project (pp. 83–94). Radnor: U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station.

    Google Scholar 

  • Nowak, D. (2002). Carbon storage and sequestration by urban trees in the USA. Environmental Pollution. doi:10.1016/S0269-7491(01)00214-7.

    Google Scholar 

  • Nyssönnen, A., & Ahti, A. (Eds.). (1996). Expert consultaion on Global Forest Resources Assessment 2000. Kotka, Finland, 10–14 June 1996. Helsinki: Finish Forest Research Institute.

    Google Scholar 

  • Pain-Orcet, M., & Bellefontaine, R. (2004). Trees outside the forest: a new perspective on the management of forest resources in the tropics. In D. Babin (Ed.), Beyond tropical deforestation (pp. 423–430). Paris: UNESCO/CIRAD.

    Google Scholar 

  • Pandey, D. (2008). Trees outside the forest (TOF) resources in India. International Forestry Review, 10, 125–133.

    Article  Google Scholar 

  • Pelletier, J., Ramankutty, N., & Potvin, C. (2011). Diagnosing the uncertainty and detectability of emission reductions for REDD+ under current capabilities: an example for Panama. Environmental Research Letters, 6(2), doi:10.1088/1748-9326/6/2/024005

  • Plieninger, T. (2011). Capitalizing on the carbon sequestration potential of agroforestry in Germany’s agricultural landscapes: realigning the climate change mitigation and landscape conservation agendas. Landscape Research. doi:10.1080/01426397.2011.582943.

    Google Scholar 

  • Reisner, Y., de Filippi, R., Herzog, F., & Palma, J. (2007). Target regions for silvoarable agroforestry in Europe. Ecological Engineering. doi:10.1016/j.ecoleng.2006.09.020.

    Google Scholar 

  • Rich, P. (1987). Mechanical structure of the stem of arborescent palms. Botanical Gazette, 148(1), 42–50.

    Article  Google Scholar 

  • Riemann, R. (2003). Pilot inventory of FIA plots traditionally called “nonforest”. Newton Square: US Dept. of Agriculture, Forest Service, Northeastern Research Station.

    Google Scholar 

  • Rydberg, D., & Falck, J. (2000). Urban forestry in Sweden from a silvicultural perspective: a review. Landscape and Urban Planning. doi:10.1016/S0169-2046(99)00068-7.

    Google Scholar 

  • Schleyer, C., & Plieninger, T. (2011). Obstacles and options for the design and implementation of payment schemes for ecosystem services provided through farm trees in Saxony, Germany. Environmental Conservation. doi:10.1017/S0376892911000361.

    Google Scholar 

  • Smith, S., & Gilbert, J. (2003). National inventory of woodland and trees—Great Britain. Edinburgh: Forestry Commission.

    Google Scholar 

  • Ståhl, G., Allard, A., Esseen, P.-A., Glimskär, A., Ringvall, A., Svensson, J., Sundquist, S., Christensen, P., Torell, A. G., Högström, M., Lagerqvist, K., Marklund, L., Nilsson, B., & Inghe, O. (2011). National Inventory of Landscapes in Sweden (NILS)—scope, design, and experiences from establishing a multiscale biodiversity monitoring system. Environmental Monitoring and Assessment, 173(1–4), 579–595. doi:10.1007/s10661-010-1406-7.

    Article  Google Scholar 

  • Ståhl, G., Heikkinen, J., Petersson, H., Repola, J., & Holm, S. (2014). Sample-based estimation of greenhouse gas emissions from forests—a new approach to account for both sampling and model errors. doi:10.5849/forsci.13-005

  • Tewari, V. P., Sukumar, R., Kumar, R., & Gadow, K. v. (2013). Forest observational studies in India: past developments and considerations for the future. Forest Ecology and Management. doi:10.1016/j.foreco.2013.06.050.

    Google Scholar 

  • Van Breugel, M., Ransijn, J., Craven, D., Bongers, F., & Hall, J. S. (2011). Estimating carbon stock in secondary forests: decisions and uncertainties associated with allometric biomass models. Forest Ecology and Management. doi:10.1016/j.foreco.2011.07.018.

    Google Scholar 

  • Vieilledent, G., Vaudry, R., Andriamanohisoa, S. F. D., Rakotonarivo, O. S., Randrianasolo, H. Z., Razafindrabe, H. N., Rakotoarivony, C. B., Ebeling, J., & Rasamoelina, M. (2012). A universal approach to estimate biomass and carbon stock in tropical forests using generic allometric models. Ecological Applications. doi:10.1890/11-0039.1.

    Google Scholar 

  • von Carlowitz, H. C. (1713). Sylvicultura oeconomica: Anweisung zur wilden Baum-Zucht. Leipzig: Braun.

  • Zanne, A. E., Lopez-Gonzalez, G., Coomes, D. A., Ilic, J., Jansen, S., Lewis, S. L., et al. (2009). Data from: towards a worldwide wood economics spectrum. Dryad Digital Repository. doi:10.5061/dryad.234.

    Google Scholar 

  • Zarnoch, S. J., & Bechtold, W. A. (2000). Estimating mapped-plot forest attributes with ratios of means. Canadian Journal of Forest Research. doi:10.1139/x99-247.

    Google Scholar 

  • Zhou, X., Brandle, J. R., Schoeneberger, M. M., & Awada, T. (2007). Developing above-ground woody biomass equations for open-grown, multiple-stemmed tree species: shelterbelt-grown Russian-olive. Ecological Modelling. doi:10.1016/j.ecolmodel.2006.10.024.

    Google Scholar 

Download references

Acknowledgments

This study would not have been possible without the data from the respective national forest inventories. We do express our sincere thanks to the responsible institutions and persons in the countries for their efforts to collect and store these data and for generously granting access to us. We are grateful for the support we received from the NFMA team at FAO in Rome and in particular, to the coordinator of the NFMA programme, Dr. David Morales. We also thank Thomas Nord-Larsen from Copenhagen University and two anonymous reviewers for providing helpful comments that improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Schnell.

Appendix

Appendix

A.1

As a complement to Table 4, we provide confidence intervals for the total biomass estimates in Fig. 3. The purpose was to provide evidence that it matters which biomass estimation approach was used. Intervals were constructed as \( \left(\widehat{t}-1.96\sqrt{\widehat{V}\left(\widehat{t}\right)},\widehat{t}+1.96\sqrt{\widehat{V}\left(\widehat{t}\right)}\right) \), where \( \widehat{t} \) is the estimated total and \( \sqrt{\widehat{V}\left(\widehat{t}\right)} \) the estimated standard error. The values \( -1.96 \) and \( 1.96 \) are the \( 0.025 \) and \( 0.975 \) quantiles of the normal probability distribution, yielding a 95 % confidence interval under the assumption of a normal distribution of \( \widehat{t} \). Note that the coverage of the intervals is probably slightly larger than 95 % due to the overestimation of the sampling error that follows from using a simple random sampling estimation framework in combination with systematic sampling (see “Estimation framework” section).

In Fig. 3, all estimated totals and their corresponding confidence intervals were related to the corresponding estimates using Chave H. This approach for estimating the biomass of single trees was thus used as a reference level to which all other biomass estimation approaches were compared. This standardisation was done to obtain a better comparability across land uses and countries.

A.2

Here, a summary of the methodology that was originally applied by each country for its biomass reporting is given. The background reports can be found at FAO (2013). In Table 5, the different allometric above-ground tree biomass models as applied by six countries are listed by species and forest type. The models provide direct estimates of above-ground tree biomass in kilogrammes. The remaining five countries estimated biomass based on tree volume and an application of wood specific gravities, wd, and biomass expansion factors, bef. In the NFI in Zambia, wood specific gravities and biomass expansion factors were combined into biomass conversion and expansion factors, bcef. The values applied for wd, bef, and bcef are provided in Table 6. In addition, the table provides information about volume estimation. In Table 7, it is shown what methods were applied by the different countries.

Table 5 Allometric models that were originally applied by countries for biomass reporting
Table 6 Factors used when estimating above-ground tree biomass based on expanding inventoried volume
Table 7 Country-specific approaches to biomass estimation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schnell, S., Altrell, D., Ståhl, G. et al. The contribution of trees outside forests to national tree biomass and carbon stocks—a comparative study across three continents. Environ Monit Assess 187, 4197 (2015). https://doi.org/10.1007/s10661-014-4197-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-014-4197-4

Keywords

Navigation