Skip to main content
Log in

Bioaccumulation of nutrients and metals in sediment, water, and phoomdi from Loktak Lake (Ramsar site), northeast India: phytoremediation options and risk assessment

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In order to determine the potential of phoomdi to accumulate nutrients and metals, 11 dominant species belonging to 10 different families, sediment, and water were analyzed for a period of 2 years from the largest freshwater wetland of north-east India, Loktak (Ramsar site). Results revealed nutrient (TN and TP) and metal (Fe, Mn, Zn, and Cu) compartmentalization in the order phoomdi > sediment > water. Iron concentrations in water (0.37 ± 0.697 to 0.57 ± 1.010 mg L−1) and sediments (81.8 ± 0.45 to 253.1 ± 0.51 mg kg−1) show high metal discharge into the wetland. Metal accumulation in phoomdi ranged up to 212.3 ± 0.46–9461.4 ± 1.09 mg kg−1 for Fe; 85.9 ± 0.31–3565.1 ± 0.87 mg kg−1 for Mn; 9.6 ± 0.41–85.39 ± 0.58 mg kg−1 for Zn; and 0.31 ± 0.04–9.2 ± 0.04 mg kg−1 for Cu, respectively. High bioaccumulation factors (BAF) for metals (S. cucullata, 5.8 × 104 Fe, 3.9 × 104 Mn, and 1.7 × 104 Cu, and O. javanica, 4.9 × 103 Zn) and nutrients (S. polyrhiza, 9.7 × 102 TN, and Z. latifolia, 7.9 × 104 TP) revealed good accumulation in phoomdi compared to the wetland water column and indicate their potential to maintain a safe environment of Loktak. Further, the paper analyzed the health hazard of metals via phoomdi wild edible consumption, with the results confirming potential risk. Thus, the paper showed the need of in-depth monitoring and ample management strategies to ensure nutritional safety conditions of locals from the metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alhashemi, A. H., Sekhavatjou, M. S., Kiabi, B. H., & Karbassi, A. R. (2012). Bioaccumulation of trace elements in water, sediment and six fish species from a freshwater wetland, Iran. Microchem J, 104, 1–6.

    Article  Google Scholar 

  • Asefi, M., & Zamani-Ahamadmahmoodi, R. (2015). Mercury concentrations and health risk assessment for two fish species, Barbus grypus and Barbus luteus from the Maroon river, Khuzestan province, Iran. Environ Monit Assess, 187, 653.

    Article  Google Scholar 

  • Borkert, C. M., Cox, F. R., & Tucker, M. R. (1998). Zinc and copper toxicity in peanut, soybean, rice and corn in soil mixtures. Commun Soil Sci Plant Anal, 29, 2991–3005.

    Article  CAS  Google Scholar 

  • Bortey-Sam, N., Nakayama, S. M. M., Ikenaka, Y., Akoto, O., Baidoo, E., Mizukawa, H., & Ishizuka, M. (2015). Health risk assessment of heavy metals and metalloids in drinking water from communities near gold mines in Tarkwa, Ghana. Environ Monit Assess, 187, 397.

  • Brummitt, R. K., & Powell, C. E. (1992). Authors of plant names. Kew: Royal Botanic Gardens.

    Google Scholar 

  • Chatterjee, S., Chetia, M., Singh, L., Chattopadhyay, B., Datta, S., & Mukhopadhyay, S. K. (2011). A study on the phytoaccumulation of waste elements in wetland plants of a Ramsar site in India. Environ Monit Assess, 178, 361–371.

    Article  CAS  Google Scholar 

  • Chopra, A. K., & Pathak, C. (2015). Accumulation of heavy metals in the vegetables grown in wastewater irrigated areas of Dehradun, India with reference to human health risk. Environ Monit Assess, 187, 445.

    Article  CAS  Google Scholar 

  • Deng, H., Ye, Z. H., & Wong, M. H. (2004). Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal contaminated sites in China. Environ Pollut, 132, 29–40.

    Article  CAS  Google Scholar 

  • Fang, Y., Nie, Z., Liu, F., Die, Q., He, J., & Huang, Q. (2014). Concentration and health risk evaluation of heavy metals in market sold vegetables and fishes based on questionnaires in Beijing, China. Environ Sci Pollut Res, 21, 11401–11408.

    Article  CAS  Google Scholar 

  • Favas, P. J. C., Pratas, J., & Prasad, M. N. V. (2012). Accumulation of arsenic by aquatic plants in large scale field conditions: opportunities for phytoremediation and bioindication. Sci Total Environ, 433, 390–397.

    Article  CAS  Google Scholar 

  • Food and Drug Association. (2001). Dietary reference intake for vitamin A, vitamin K, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium and Zinc. Report of the panel on micronutrients, National Academy Press. Washington DC: Dietary supplements, Centre for Food safety and Applied Nutrition.

    Google Scholar 

  • Forest Department. (2011). Annual administrative report. Department of Forest. India: Government of Manipur.

    Google Scholar 

  • Gupta, P. K. (2002). Soil, plant, water and fertilizer analysis (pp. 25–52). India: Agrobios.

    Google Scholar 

  • Gurzau, E. S., Neagu, C., & Gurzau, A. C. (2003). Essential metals—case study on Iron. Ecotoxicol Environ Saf, 58(1), 190–200.

    Article  Google Scholar 

  • Ha, N. T. H., Sakakibara, M., & Sano, S. (2011). Accumulation of indium and other heavy metals by Eleocharis ocicularis: an option for phytoremediation and phytomining. Bioresour Technol, 102, 2228–2234.

    Article  Google Scholar 

  • Hadad, H. R., & Maine, M. A. (2007). Phosphorous amount in floating and rooted macrophytes growing in wetlands from the Middle Parana River floodplain (Argentina). Ecol Eng, 31, 251–258.

    Article  Google Scholar 

  • Handy, R. (1996). Dietary exposure to toxic metals in fish. Seminar series—Society for Experimental Biology (pp. 29–60). Cambridge: Cambridge University press.

    Google Scholar 

  • Harmanescu, M., Alda, L. M., Bordean, D. M., Gogoasa, I., & Gergen, I. (2011). Heavy metals health risk assessment for population via consumption of vegetables grown in old mining area; a case study: Banat county, Romania. Chem Cent J, 5, 64.

  • Khan, S., Cao, Q., Zheng, Y. M., Huang, Y. Z., & Zhu, Y. G. (2008). Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ Pollut, 152, 686–692.

    Article  CAS  Google Scholar 

  • Laiba, M. T. (1992). The geography of Manipur (1st ed., pp. 10–55). India: Imphal.

    Google Scholar 

  • Li, J., Huang, Z. Y., Hu, Y., & Yang, H. (2013). Potential risk assessment of heavy metals by consuming shellfish collected from Xiamen, China. Environ Sci Pollut Res, 20, 2937–2947.

    Article  CAS  Google Scholar 

  • Loktak Development Authority. (2011). Annual report. India: Loktak Development Authority, Government of Manipur.

    Google Scholar 

  • Mazumdar, K., & Das, S. (2014). Phytoremediation of Pb, Zn, Fe, and Mg with 25 wetland plant species from a paper mill contaminated site in northeast India. Environ Sci Pollut Res. doi:10.1007/s11356-014-3377-7.

    Google Scholar 

  • Meitei, M. D., & Prasad, M. N. V. (2013a). Lead (II) and cadmium (II) biosorption on Spirodela polyrhiza (L.) Schleiden biomass. J Environ Chem Eng, 1(3), 200–207.

  • Meitei, M. D., & Prasad, M. N. V. (2013b). Phytotechnological applications of phoomdi, Loktak lake, Manipur, North-East India. Curr Sci, 105(5), 569–570.

    Google Scholar 

  • Meitei, M. D., & Prasad, M. N. V. (2014). Adsorption of Cu (II), Mn (II) and Zn (II) by Spirodela polyrhiza (L.) Schleiden: equilibrium, kinetic and thermodynamic studies. Ecol Eng, 71, 308–317.

    Article  Google Scholar 

  • Meitei, M. D., & Prasad, M. N. V. (2015). Phoomdi—a unique plant biosystem of Loktak lake, Manipur, North-East India: traditional and ecological knowledge. Plant Biosyst, 149(4), 777–787.

  • Mirza, N., Pervez, A., Mahmood, Q., Shah, M. M., & Shafquat, M. N. (2011). Ecological restoration of arsenic contaminated soil by Arundo donax L. Ecol Eng, 37, 1949–1956.

    Article  Google Scholar 

  • Mitsch, W. J., & Gooselink, J. G. (2007). Wetlands (4th ed., pp. 1–34). USA: Wiley.

    Google Scholar 

  • Murphy, J., & Riley, J. (1962). A modified single solution method for determination of phosphate in natural water. Anal Chim Acta, 27, 31–36.

    Article  CAS  Google Scholar 

  • Osredkar, J. (2011). Copper and zinc, biological role and significance of copper/zinc imbalance. J Clinic Toxicol. doi:10.4172/2161-0495.53-001.

  • Peng, K., Luo, C., Luo, L., Li, X., & Shen, Z. (2008). Bioaccumulation of heavy metals by the aquatic plants Potamogeton pectinatus L. and Potamogeton malaianus Miq. and their potential use for contamination indicators and in wastewater treatment. Sci Total Environ, 392, 22–29.

    Article  CAS  Google Scholar 

  • Prasad, M. N. V. (2004). Phytoremediation of metals and radionuclides in the environment; the case for natural hyperaccumulators, metal transporters, soil amending chelators and transgenic plants. In Heavy metal stress in plants (pp. 345–391). Berlin Heidelberg: Springer.

    Chapter  Google Scholar 

  • Rai, P. K. (2009). Heavy metals in water, sediments and wetland plants in an aquatic ecosystem of tropical industrial region, India. Environ Monit Assess, 158, 433–457.

    Article  CAS  Google Scholar 

  • Reeves, R. D., & Baker, A. J. (2000). Metal accumulating plants, phytoremediation of toxic metals: using plants to clean up the environment (pp. 193–229). New York: Wiley.

    Google Scholar 

  • Rognerud, S., & Fjeld, E. (2001). Trace element contamination of Norwegian lake sediments. J Human Environ, 30(1), 11–19.

  • Shao, X., Wu, M., Gu, B., Chen, Y., & Liang, X. (2013). Nutrient retention in plant biomass and sediments from the salt marsh in Hangzhou Bay Estuary, China. Environ Sci Pollut Res, 20, 6382–6391.

    Article  CAS  Google Scholar 

  • Singh, A. L., & Khundrakpam, M. L. (2011). Phumdi proliferation: a case study of Loktak lake, Manipur. Water Environ J, 25, 99–105.

  • Singh, T. H., & Singh, R. K. S. (1994). Ramsar sites of India, Loktak lake. New -Delhi, India: World Wide Fund for Nature (WWF).

    Google Scholar 

  • Singh, N. K. S., Devi, C. B., Sudarshan, M., Meetei, N. S., Singh, T. B., & Singh, N. R. (2013). Influence of Nambul river on the water quality of fresh water in Loktak lake. Int J Water Resour Environ Eng, 5(6), 321–327.

  • Song, B., Lei, M., Chen, T., Zheng, Y. M., Xie, Y. F., Li, X. Y., & Gao, D. (2009). Assessing the health risk of heavy metals in vegetables to the general population in Beijing, China. J Environ Sci, 21, 1702–1709.

    Article  CAS  Google Scholar 

  • Todd, P. A., Ong, X., & Chou, L. M. (2010). Impacts of pollution on marine life in Southeast Asia. J Biodiver Conserv, 19, 1063–1082.

  • Trishal, C. I., & Manihar, T. (2004). Loktak—the atlas of Loktak lake. Wetlands International South Asia (WISA). New-Delhi, India: Loktak Development Authority (LDA).

    Google Scholar 

  • Turner, A., Millward, G. E., & Morris, A. W. (1991). Particulate metals in five major north sea estuaries. Estuar Coast Shelf Sci, 32, 325–346.

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency. (2011). Risk based concentration table. Washington, Unites States of America: Environmental protection Agency.

    Google Scholar 

  • World Health Organisation. (2011). Guidelines for drinking water quality (4th ed.). Geneva: WHO.

    Google Scholar 

  • Xing, W., Wu, H., Hao, B., Huang, W., & Liu, G. (2013). Bioaccumulation of heavy metals by submerged macrophytes: looking for hyperaccumulators in eutrophic lakes. Environ Sci Technol, 47, 4695–4703.

    Article  CAS  Google Scholar 

  • Yap, C. K., Jusoh, A., Leong, W. J., Karami, A., & Ong, G. H. (2015). Potential human health risk assessment if heavy metals via the consumption of tilapia Oreochromis mossmabicus collected from contaminated and uncontaminated ponds. Environ Monit Assess, 187, 584.

    Article  Google Scholar 

  • Ye, X., Xiao, W., Zhang, Y., Zhao, S., Wang, G., Zhang, Q., & Wang, Q. (2015). Assessment of heavy metal pollution in vegetables and relationships with soil heavy metal distribution in Zhejiang province, China. Environ Monit Assess, 187, 378.

    Article  Google Scholar 

  • Zhang, M., Cui, L., Sheng, L., & Wang, Y. (2009). Distribution and enrichment of heavy metals among sediments, water body and plants in Hengshihu Wetlands of Northern China. Ecol Eng, 35, 563–569.

    Article  CAS  Google Scholar 

  • Zhang, R., Jiang, D., Zhang, L., Cui, Y., Li, M., & Xiao, L. (2014). Distribution of nutrients, heavy metals and PAH’s affected by sediment dredging in the Wujin’gang River basin flowing into Meiliang bay of Lake Taihu. Environ Sci Pollut Res, 21, 2141–2153.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Maibam Dhanaraj Meitei acknowledges the University of Hyderabad for awarding the scholarship. Authors thank the locals from Thanga, Moirang, Sendra, Ningthoukhong, and Keibul Lamjao for their help and inputs. Authors thank LDA for providing the image of Loktak.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majeti Narasimha Vara Prasad.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meitei, M.D., Prasad, M.N.V. Bioaccumulation of nutrients and metals in sediment, water, and phoomdi from Loktak Lake (Ramsar site), northeast India: phytoremediation options and risk assessment. Environ Monit Assess 188, 329 (2016). https://doi.org/10.1007/s10661-016-5339-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5339-7

Keywords

Navigation