Skip to main content

Advertisement

Log in

Towards an integrated framework for air quality monitoring and exposure estimation—a review

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

For the health and safety of the public, it is essential to measure spatiotemporal distribution of air pollution in a region and thus monitor air quality in a fine-grain manner. While most of the sensing-based commercial applications available until today have been using fixed environmental sensors, the use of personal devices such as smartphones, smartwatches, and other wearable devices has not been explored in depth. These kinds of devices have an advantage of being with the user continuously, thus providing an ability to generate accurate and well-distributed spatiotemporal air pollution data. In this paper, we review the studies (especially in the last decade) done by various researchers using different kinds of environmental sensors highlighting related techniques and issues. We also present important studies of measuring impact and emission of air pollution on human beings and also discuss models using which air pollution inhalation can be associated to humans by quantifying personal exposure with the use of human activity detection. The overarching aim of this review is to provide novel and key ideas that have the potential to drive pervasive and individual centric and yet accurate pollution monitoring techniques which can scale up to the future needs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aberer, K., Sathe, S., Chakraborty, D., Martinoli, A., Barrenetxea, G., Faltings, B., Thiele, L. (2010). Opensense: open community driven sensing of environment. In Proceedings of the ACM SIGSPATIAL international workshop on GeoStreaming (pp. 39–42). ACM.

  • Air Quality Egg. (2016). Airqualityegg. http://airqualityegg.com/. Accessed 22 Dec 2016.

  • Airsensortoolbox. (2017). Epa air sensor toolbox. https://www.epa.gov/air-sensor-toolbox. Accessed 23 Sept 2017.

  • Al-Ali, A., Zualkernan, I., Aloul, F. (2010). A mobile gprs-sensors array for air pollution monitoring. IEEE Sensors Journal, 10(10), 1666–1671.

    Article  CAS  Google Scholar 

  • Alphasense. (2016). Alphasense. http://www.alphasense.com/. Accessed 16 May 2017.

  • Ama, M., & et al. (2016). Activity recognition on smartphones: efficient sampling rates and window sizes. In 2016 IEEE international conference on pervasive computing and communication workshops (PerCom Workshops) (pp. 1–6). IEEE.

  • Amft, O., Junker, H., Troster, G. (2005). Detection of eating and drinking arm gestures using inertial body-worn sensors. In Ninth IEEE international symposium on wearable computers (ISWC’05) (pp. 160–163). IEEE.

  • Amft, O., & Tröster, G. (2008). Recognition of dietary activity events using on-body sensors. Artificial Intelligence in Medicine, 42(2), 121–136.

    Article  Google Scholar 

  • Amft, O., & Tröster, G. (2009). On-body sensing solutions for automatic dietary monitoring. IEEE Pervasive Computing, 8(2), 62–70.

    Article  Google Scholar 

  • Ando, M., Katagiri, K., Tamura, K., Yamamoto, S., Matsumoto, M., Li, Y., Cao, S., Ji, R., Liang, C. (1996). Indoor and outdoor air pollution in tokyo and Beijing supercities. Atmospheric Environment, 30(5), 695–702.

    Article  CAS  Google Scholar 

  • Araki, S., Yamamoto, K., Kondo, A. (2015). Application of regression kriging to air pollutant concentrations in Japan with high spatial resolution. Aerosol and Air Quality Research, 15(1), 234–241.

    Article  CAS  Google Scholar 

  • Aram, S., Troiano, A., Pasero, E. (2012). Environment sensing using smartphone. In S2012 IEEE sensors applications symposium (SAS) (pp. 1–4). IEEE.

  • Bayat, A., Pomplun, M., Tran, D.A. (2014). A study on human activity recognition using accelerometer data from smartphones. Procedia Computer Science, 34, 450–457.

    Article  Google Scholar 

  • Bernstein, J.A., Alexis, N., Barnes, C., Bernstein, I.L., Nel, A., Peden, D., Diaz-Sanchez, D., Tarlo, S.M., Williams, P.B. (2004). Health effects of air pollution. Journal of Allergy and Clinical Immunology, 114(5), 1116–1123.

    Article  Google Scholar 

  • Bisio, I., Lavagetto, F., Marchese, M., Sciarrone, A. (2014). Comparison of situation awareness algorithms for remote health monitoring with smartphones. In 2014 IEEE global communications conference (pp. 2454–2459). IEEE.

  • Brauer, M., Freedman, G., Frostad, J., Van Donkelaar, A., Martin, R.V., Dentener, F., Dingenen, R.V., Estep, K., Amini, H., Apte, J.S., et al. (2015). Ambient air pollution exposure estimation for the global burden of disease 2013. Environmental Science & Technology, 50(1), 79–88.

    Article  CAS  Google Scholar 

  • Broderick, B., Byrne, M., McNabola, A., Gill, L., Pilla, F., McGrath, J., McCreddin, A. (2015). Palm: a personal activity-location model of exposure to air pollution environmental protection agency. Ireland: Wexford.

    Google Scholar 

  • Brunekreef, B., & Holgate, S.T. (2002). Air pollution and health. The Lancet, 360(9341), 1233–1242.

    Article  CAS  Google Scholar 

  • Copert. (2016). Copert. http://emisia.com/products/copert. Accessed 22 Dec 2016.

  • Costa, J., Fazendeiro, P., Ferreira, F. (2016). A mobile application to improve the quality of life via exercise. In 2016 IEEE 12th international conference on intelligent computer communication and processing (ICCP) (pp. 55–62). IEEE.

  • CPCBIndia. (2017). Cpcbindia. http://www.indiaairquality.info/wp-content/uploads/docs/2003_CPCB_Guidelines_for_Air_Monitoring.pdf. Accessed 1 Aug 2017.

  • Dawson, S.V., & Schenker, M.B. (1979). Health effects of inhalation of ambient concentrations of nitrogen dioxide1. American Review of Respiratory Disease, 120(2), 281– 292.

    CAS  Google Scholar 

  • De Nazelle, A., Fruin, S., Westerdahl, D., Martinez, D., Ripoll, A., Kubesch, N., Nieuwenhuijsen, M. (2012). A travel mode comparison of commuters’ exposures to air pollutants in Barcelona. Atmospheric Environment, 59, 151–159.

    Article  CAS  Google Scholar 

  • Devarakonda, S., Sevusu, P., Liu, H., Liu, R., Iftode, L., Nath, B. (2013). Real-time air quality monitoring through mobile sensing in metropolitan areas. In Proceedings of the 2nd ACM SIGKDD international workshop on urban computing (p. 15). ACM.

  • Dewulf, B., Neutens, T., Van Dyck, D., De Bourdeaudhuij, I., Panis, L.I., Beckx, C., Van de Weghe, N. (2016). Dynamic assessment of inhaled air pollution using gps and accelerometer data. Journal of Transport & Health, 3(1), 114–123.

    Article  Google Scholar 

  • Doraiswamy, P., Davis, W.T., Miller, T.L., Fu, J.S., Lam, Y.-F. (2005). Measuring air pollution inside and outside of diesel truck cabs. Prepared for the US Environmental Protection Agency by Department of Civil and Environmental Engineering, University of Tennessee.

  • EPA Standards. (2017). Epa standards. https://www.epa.gov/criteria-air-pollutants/naaqs-table. Accessed 26 July 2017.

  • EPASensors. (2017). Epasensors. https://www3.epa.gov/ttn/amtic/inorg.html. Accessed 23 Nov 2017.

  • Europe Standard. (2017). Europe standard. http://ec.europa.eu/environment/air/quality/standards.htm. Accessed 26 July 2017.

  • EuroSensors. (2017). Eurosensors. http://ec.europa.eu/environment/archives/cafe/pdf/steering_technical_group/guidancepm.pdf. Accessed 1 Aug 2017.

  • Faulkner, M., Olson, M., Chandy, R., Krause, J., Chandy, K.M., Krause, A. (2011). The next big one: detecting earthquakes and other rare events from community-based sensors. In 2011 10th international conference on information processing in sensor networks (IPSN) (pp. 13–24). IEEE.

  • Folinsbee, L.J. (1993). Human health effects of air pollution. Environmental Health Perspectives, 100, 45.

    Article  CAS  Google Scholar 

  • Frank, N. (1964). Studies on the effects of acute exposure to sulphur dioxide in human subjects. Proceedings of the Royal Society of Medicine, pp. 1029–1033.

  • GEOS-chem. (2017). Geos. http://acmg.seas.harvard.edu/geos/. Accessed 25 July 2017.

  • Greenwald, R., Hayat, M.J., Barton, J., Lopukhin, A. (2016). A novel method for quantifying the inhaled dose of air pollutants based on heart rate, breathing rate and forced vital capacity. PloS One, 11(1), e0147578.

    Article  CAS  Google Scholar 

  • Hasenfratz, D., Saukh, O., Sturzenegger, S., Thiele, L. (2012). Participatory air pollution monitoring using smartphones. In Mobile Sensing. 2nd International Workshop on Mobile Sensing.

  • Heagle, A.S., Body, D.E., Heck, W.W. (1973). An open-top field chamber to assess the impact of air pollution on plants 1. Journal of Environmental Quality, 2(3), 365–368.

    Article  CAS  Google Scholar 

  • Hojaiji, H., Kalantarian, H., Bui, A.A., King, C.E., Sarrafzadeh, M. (2017). Temperature and humidity calibration of a low-cost wireless dust sensor for real-time monitoring. In 2017 IEEE sensors applications symposium (SAS), (pp. 1–6). IEEE.

  • Honicky, R., Brewer, E.A., Paulos, E., White, R. (2008). N-smarts: networked suite of mobile atmospheric real-time sensors. In Proceedings of the second ACM SIGCOMM workshop on networked systems for developing regions (pp. 25–30). ACM.

  • Hu, K., Davison, T., Rahman, A., Sivaraman, V. (2014a). Air pollution exposure estimation and finding association with human activity using wearable sensor network. In Proceedings of the MLSDA 2014 2nd workshop on machine learning for sensory data analysis (p. 48). ACM.

  • Hu, K., Wang, Y., Rahman, A., Sivaraman, V. (2014b). Personalising pollution exposure estimates using wearable activity sensors. In 2014 IEEE ninth international conference on intelligent sensors, sensor networks and information processing (ISSNIP), (pp. 1–6). IEEE.

  • India Standard. (2017). India standard. http://www.arthapedia.in/index.php. Ambient air Quality Standards in India. Accessed 26 July 2017.

  • Jafari, H., Li, X., Qian, L., Chen, Y. (2015). Community based sensing: a test bed for environment air quality monitoring using smartphone paired sensors. In 2015 36th IEEE Sarnoff symposium (pp. 12–17). IEEE.

  • Jain, V., Goel, M., Maity, M., Naik, V., Ramjee, R. (2018). Scalable measurement of air pollution using cots iot devices. In 2018 10th international conference on communication systems & networks (COMSNETS) (pp. 553–556). IEEE.

  • Jha, D.K., Sabesan, M., Das, A., Vinithkumar, N., Kirubagaran, R. (2011). Evaluation of interpolation technique for air quality parameters in port blair, India. Universal Journal of Environmental Research and Technology, 1(3), 301–310.

    CAS  Google Scholar 

  • Junker, H., Amft, O., Lukowicz, P., Tröster, G. (2008). Gesture spotting with body-worn inertial sensors to detect user activities. Pattern Recognition, 41(6), 2010–2024.

    Article  Google Scholar 

  • Kamionka, M., Breuil, P., Pijolat, C. (2006). Calibration of a multivariate gas sensing device for atmospheric pollution measurement. Sensors and Actuators B: Chemical, 118(1), 323–327.

    Article  CAS  Google Scholar 

  • Kampa, M., & Castanas, E. (2008). Human health effects of air pollution. Environmental Pollution, 151(2), 362–367.

    Article  CAS  Google Scholar 

  • Kaur, A., Bansal, D., Singla, S. (2017a). A review on estimating the effects of inhaling airborne pollutants and air quality monitoring. In 2017 8th international conference on computing, communication and networking technologies (ICCCNT) (pp. 1–7). IEEE.

  • Kaur, A., Singla, S., Bansal, D. (2017b). Quantifying personal exposure to spatio-temporally distributed air pollutants using mobile sensors. In Proceedings of the first ACM workshop on mobile crowdsensing systems and applications (pp. 1–6). ACM.

  • Khot, R., & Chitre, V. (2017). Survey on air pollution monitoring systems. In 2017 international conference on innovations in information, embedded and communication systems (ICIIECS) (pp. 1–4). IEEE.

  • Kim, S.-Y., Yi, S.-J., Eum, Y.S., Choi, H.-J., Shin, H., Ryou, H.G., Kim, H. (2014). Ordinary kriging approach to predicting long-term particulate matter concentrations in seven major Korean cities. Environmental Health and Toxicology, 29, e2014012.

    Article  Google Scholar 

  • Klumpp, A., Klumpp, G., Domingos, M. (1994). Plants as bioindicators of air pollution at the serra do mar near the industrial complex of Cubatão, Brazil. Environmental Pollution, 85(1), 109–116.

    Article  CAS  Google Scholar 

  • Kwapisz, J.R., Weiss, G.M., Moore, S.A. (2011). Activity recognition using cell phone accelerometers. ACM SigKDD Explorations Newsletter, 12(2), 74–82.

    Article  Google Scholar 

  • Larkin, A., & Hystad, P. (2017). Towards personal exposures: how technology is changing air pollution and health research. Current Environmental Health Reports, 4(4), 463–471.

    Article  CAS  Google Scholar 

  • Lee, S., & Chang, M. (2000). Indoor and outdoor air quality investigation at schools in Hong Kong. Chemosphere, 41(1), 109–113.

    Article  CAS  Google Scholar 

  • Li, J.J., Faltings, B., Saukh, O., Hasenfratz, D., Beutel, J. (2012). Sensing the air we breathe-the opensense Zurich dataset. In Proceedings of the national conference on artificial intelligence, (Vol. 1 pp. 323–325).

  • Liu, X., Song, Z., Ngai, E., Ma, J., Wang, W. (2015). Pm2.5 monitoring using images from smartphones in participatory sensing. In 2015 IEEE conference on computer communications workshops (INFOCOM WKSHPS) (pp. 630–635). IEEE.

  • Manning, W., & Godzik, B. (2004). Bioindicator plants for ambient ozone in Central and Eastern Europe. Environmental Pollution, 130(1), 33–39.

    Article  CAS  Google Scholar 

  • Matte, T.D., Ross, Z., Kheirbek, I., Eisl, H., Johnson, S., Gorczynski, J.E., Kass, D., Markowitz, S., Pezeshki, G., Clougherty, J.E. (2013). Monitoring intraurban spatial patterns of multiple combustion air pollutants in New York City: design and implementation. Journal of Exposure Science and Environmental Epidemiology, 23(3), 223–231.

    Article  CAS  Google Scholar 

  • Mattmann, C., Amft, O., Harms, H., Troster, G., Clemens, F. (2007). Recognizing upper body postures using textile strain sensors. In 2007 11th IEEE international symposium on wearable computers (pp. 29–36). IEEE.

  • McDonnell, W.F., Horstman, D.H., Hazucha, M., Seal, E. Jr, Haak, E., Salaam, S., House, D. (1983). Pulmonary effects of ozone exposure during exercise: dose-response characteristics. Journal of Applied Physiology, 54(5), 1345–1352.

    Article  CAS  Google Scholar 

  • Moltchanov, S., Levy, I., Etzion, Y., Lerner, U., Broday, D.M., Fishbain, B. (2015). On the feasibility of measuring urban air pollution by wireless distributed sensor networks. Science of the Total Environment, 502, 537–547.

    Article  CAS  Google Scholar 

  • Mordukhovich, I., Beyea, J., Herring, A.H., Hatch, M., Stellman, S.D., Teitelbaum, S.L., Richardson, D.B., Millikan, R.C., Engel, L.S., Shantakumar, S., et al. (2016). Vehicular traffic-related polycyclic aromatic hydrocarbon exposure and breast cancer incidence: the long island breast cancer study project (libcsp). Environmental Health Perspectives, 124(1), 30.

    CAS  Google Scholar 

  • Moves. (2016). Moves. https://www.epa.gov/moves. Accessed 22 Dec 2016.

  • Mun, M., Reddy, S., Shilton, K., Yau, N., Burke, J., Estrin, D., Hansen, M., Howard, E., West, R., Boda, P. (2009). Peir, the personal environmental impact report, as a platform for participatory sensing systems research. In Proceedings of the 7th international conference on mobile systems, applications, and services (pp. 55–68). ACM.

  • Opensense II. (2017). Opensense ii. https://pdfs.semanticscholar.org/8df0/a038b0cddf68e0274db19f7b78476754db5e.pdf. Accessed 9 June 2017.

  • Ott, W.R. (1982). Concepts of human exposure to air pollution. Environment International, 7(3), 179–196.

    Article  Google Scholar 

  • Ouidir, M., Giorgis-Allemand, L., Lyon-Caen, S., Morelli, X., Cracowski, C., Pontet, S., Pin, I., Lepeule, J., Siroux, V., Slama, R. (2015). Estimation of exposure to atmospheric pollutants during pregnancy integrating space-time activity and indoor air levels: does it make a difference? Environment International, 84, 161–173.

    Article  CAS  Google Scholar 

  • Panis, L.I., De Geus, B., Vandenbulcke, G., Willems, H., Degraeuwe, B., Bleux, N., Mishra, V., Thomas, I., Meeusen, R. (2010). Exposure to particulate matter in traffic: a comparison of cyclists and car passengers. Atmospheric Environment, 44(19), 2263–2270.

    Article  CAS  Google Scholar 

  • Predić, B., Yan, Z., Eberle, J., Stojanovic, D., Aberer, K. (2013). Exposuresense: integrating daily activities with air quality using mobile participatory sensing. In 2013 IEEE international conference on pervasive computing and communications workshops (PERCOM workshops) (pp. 303–305). IEEE.

  • Radhakrishnan, M., Sen, S., Vigneshwaran, S., Misra, A., Balan, R. (2016). Iot+ small data: transforming in-store shopping analytics & services. In 2016 8th international conference on communication systems and networks (COMSNETS) (pp. 1–6). IEEE.

  • Rakha, H., Ahn, K., Trani, A. (2003). Comparison of mobile5a, mobile6, vt-micro, and cmem models for estimating hot-stabilized light-duty gasoline vehicle emissions. Canadian Journal of Civil Engineering, 30(6), 1010–1021.

    Article  Google Scholar 

  • Rana, R.K., Chou, C.T., Kanhere, S.S., Bulusu, N., Hu, W. (2010). Ear-phone: an end-to-end participatory urban noise mapping system. In Proceedings of the 9th ACM/IEEE international conference on information processing in sensor networks (pp. 105–116). ACM.

  • Ravi, N., Dandekar, N., Mysore, P., Littman, M.L. (2005). Activity recognition from accelerometer data. In AAAI, (Vol. 5 pp. 1541–1546).

  • Rodriguez, J.H., Pignata, M.L., Fangmeier, A., Klumpp, A. (2010). Accumulation of polycyclic aromatic hydrocarbons and trace elements in the bioindicator plants tillandsia capillaris and lolium multiflorum exposed at pm10 monitoring stations in stuttgart (Germany). Chemosphere, 80(3), 208–215.

    Article  CAS  Google Scholar 

  • Santamouris, M. (2013). Energy and climate in the urban built environment. Evanston: Routledge.

    Book  Google Scholar 

  • Seaton, A., Godden, D., MacNee, W., Donaldson, K. (1995). Particulate air pollution and acute health effects. The Lancet, 345(8943), 176–178.

    Article  CAS  Google Scholar 

  • Sen, S., Rachuri, K.K., Mukherji, A., Misra, A. (2016). Did you take a break today? detecting playing foosball using your smartwatch. In 2016 IEEE international conference on pervasive computing and communication workshops (PerCom Workshops) (pp. 1–6). IEEE.

  • Sen, S., Subbaraju, V., Misra, A., Balan, R.K., Lee, Y. (2015). The case for smartwatch-based diet monitoring. In 2015 IEEE international conference on pervasive computing and communication workshops (PerCom workshops) (pp. 585–590). IEEE.

  • Sensordrone. (2018). Sensordrone. https://www.kickstarter.com/projects/453951341/sensordrone-the-6th-sense-of-your-smartphoneand-be. Accessed 18 Dec 2016.

  • SensorsNews. (2017). Sensorsnews. https://actu.epfl.ch/news/air-quality-sensors-take-a-ride-on-city-buses/. Accessed 9 June 2017.

  • Shankari, K., Yin, M., Culler, D., Katz, R. (2015). E-mission: automated transportation emission calculation using smartphones. In 2015 IEEE international conference on pervasive computing and communication workshops (PerCom workshops) (pp. 268–271). IEEE.

  • Shoaib, M., Bosch, S., Incel, O.D., Scholten, H., Havinga, P.J. (2015). A survey of online activity recognition using mobile phones. Sensors, 15(1), 2059–2085.

    Article  Google Scholar 

  • Singla, S. (2018). Air quality friendly route recommendation system. In Proceedings of the 2018 workshop on MobiSys 2018 Ph. D. forum (pp. 9–10). ACM.

  • Singla, S., Bansal, D., Misra, A. (2016). Poster: air quality friendly route recommendation system. In Proceedings of the 14th annual international conference on mobile systems, applications, and services companion (pp. 79–79). ACM.

  • Singla, S., & Misra, A. (2016). Indoor location error-detection via crowdsourced multi-dimensional mobile data. In Proceedings of the first workshop on mobile data (pp. 19–24). ACM.

  • Sirsikar, S.V, Priya Karemore, A.V.D., Kamble, P.A. (2015). Design and implementation of geographically pollution monitoring system. International Journal on Recent and Innovation Trends in Computing and Communication, 3(2), 4984–4989.

    Google Scholar 

  • Snyder, E.G., Watkins, T.H., Solomon, P.A., Thoma, E.D., Williams, R.W., Hagler, G.S., Shelow, D., Hindin, D.A., Kilaru, V.J., Preuss, P.W. (2013). The changing paradigm of air pollution monitoring. Environmental Science & Technology, 47(20), 11369–11377.

    Article  CAS  Google Scholar 

  • Solomon, G.M., Campbell, T.R., Feuer, G.R., Masters, J., Samkian, A., Paul, K.A. (2001). No breathing in the aisles: diesel exhaust inside school buses, ERIC. https://files.eric.ed.gov/fulltext/ED450878.pdf.

  • SPEERS, O.M., & UTELL, M.J. (1991). Effects of nitrogen dioxide exposure on pulmonary function and airway reactivity in normal humans. American Review of Respiratory Disease, 143, 522–527.

    Article  Google Scholar 

  • Spinelle, L., Gerboles, M., Kok, G., Persijn, S., Sauerwald, T. (2017). Review of portable and low-cost sensors for the ambient air monitoring of benzene and other volatile organic compounds. Sensors, 17(7), 1520.

    Article  CAS  Google Scholar 

  • Spirn, A., & Whiston, A. (1986). Air quality at street-level strategies for urban design. Boston Redevelopment Authority, 80. https://archive.org/details/airqualityatstre00bost.

  • Stewart, R.D. (1975). The effect of carbon monoxide on humans. Annual Review of Pharmacology, 15(1), 409–423.

    Article  CAS  Google Scholar 

  • Talampas, M.C.R., & Low, K.-S. (2012). Maximum likelihood estimation of ground truth for air quality monitoring using vehicular sensor networks. In TENCON 2012-2012 IEEE region 10 conference (pp. 1–6). IEEE.

  • Tecer, L.H., Alagha, O., Karaca, F., Tuncel, G., Eldes, N. (2008). Particulate matter (pm2. 5, pm10-2.5, and pm10) and children’s hospital admissions for asthma and respiratory diseases: a bidirectional case-crossover study. Journal of Toxicology and Environmental Health, Part A, 71(8), 512–520.

    Article  CAS  Google Scholar 

  • Thomas, M.D. (1961). Effects of air pollution on plants. Air Pollution, 239, 233–278.

  • Treshow, M. (1984). Air pollution and plant life. United States: N. p., https://www.osti.gov/biblio/6013660.

  • Tsujita, W., Ishida, H., Moriizumi, T. (2004). Dynamic gas sensor network for air pollution monitoring and its auto-calibration. In Sensors, 2004. Proceedings of IEEE (pp. 56–59). IEEE.

  • Ustev, Y.E., Durmaz Incel, O., Ersoy, C. (2013). User, device and orientation independent human activity recognition on mobile phones: challenges and a proposal. In Proceedings of the 2013 ACM conference on pervasive and ubiquitous computing adjunct publication (pp. 1427–1436). ACM.

  • Valli, G., Internullo, M., Ferrazza, A.M., Onorati, P., Cogo, A., Palange, P. (2013). Minute ventilation and heart rate relationship for estimation of the ventilatory compensation point at high altitude: a pilot study. Extreme Physiology & Medicine, 2(1), 1.

    Article  Google Scholar 

  • Variable inc. (2018). Variable inc. http://shop.variableinc.com/collections/sensor-modules-1. Accessed 18 Dec 2016.

  • Vigneshwaran, S., Sen, S., Misra, A., Chakraborti, S., Balan, R.K. (2015). Using infrastructure-provided context filters for efficient fine-grained activity sensing. In 2015 IEEE international conference on pervasive computing and communications (PerCom) (pp. 87–94). IEEE.

  • Wallace, L.A., Mitchell, H., T OConnor, G., Neas, L., Lippmann, M., Kattan, M., Koenig, J., Stout, J.W., Vaughn, B.J., Wallace, D., et al. (2003). Particle concentrations in inner-city homes of children with asthma: the effect of smoking, cooking, and outdoor pollution. Environmental Health Perspectives, 111(9), 1265.

    Article  CAS  Google Scholar 

  • Wang, D., Tan, A.-H., Zhang, D. (2015). Non-intrusive robust human activity recognition for diverse age groups. In 2015 IEEE/WIC/ACM international conference on web intelligence and intelligent agent technology (WI-IAT), Vol. 2 pp. 368–375). IEEE.

  • Wen, T.-H., Jiang, J.-A., Sun, C.-H., Juang, J.-Y., Lin, T.-S. (2013). Monitoring street-level spatial-temporal variations of carbon monoxide in urban settings using a wireless sensor network (wsn) framework. International Journal of Environmental Research and Public Health, 10(12), 6380–6396.

    Article  CAS  Google Scholar 

  • WHO. (2018). Who. http://www.who.int/mediacentre/news/releases/2014/air-pollution/en/. Accessed 27 July 2018.

  • WHO Standard. (2017). Who standard. http://apps.who.int/iris/bitstream/10665/69477/1/WHO_SDE_PHE_OEH_06.02_eng.pdf. Accessed 26 July 2017.

  • Wiese, J., Saponas, T.S., Brush, A. (2013). Phoneprioception: enabling mobile phones to infer where they are kept. In Proceedings of the SIGCHI conference on human factors in computing systems (pp. 2157–2166). ACM.

  • Wilhelm, E., Siby, S., Zhou, Y., Ashok, X.J.S., Jayasuriya, M., Foong, S., Kee, J., Wood, K.L., Tippenhauer, N.O. (2016). Wearable environmental sensors and infrastructure for mobile large-scale urban deployment. IEEE Sensors Journal, 16(22), 8111–8123.

    Article  Google Scholar 

  • Yi, W.Y., Lo, K.M., Mak, T., Leung, K.S., Leung, Y., Meng, M.L. (2015). A survey of wireless sensor network based air pollution monitoring systems. Sensors, 15(12), 31392–31427.

    Article  Google Scholar 

  • Young, P., Pilcher, J., Patel, M., Cameron, L., Braithwaite, I., Weatherall, M., Beasley, R. (2013). Delivery of titrated oxygen via a self-inflating resuscitation bag. Resuscitation, 84(3), 391–394.

    Article  Google Scholar 

  • Zhang, L., Ou, M., Fu, X., Yan, X. (2016). Using smartphones to estimate vehicle emission under urban traffic levels-of-service. In 2016 12th world congress on intelligent control and automation (WCICA) (pp. 1758–1763). IEEE.

  • Zhang, L., Wu, X., Luo, D. (2015). Real-time activity recognition on smartphones using deep neural networks. In 2015 IEEE 12th international conference on ubiquitous intelligence and computing and 2015 IEEE 12th international conference on autonomic and trusted computing and 2015 IEEE 15th international conference on scalable computing and communications and its associated workshops (UIC-ATC-ScalCom) (pp. 1236–1242). IEEE.

Download references

Funding

This work has been undertaken as a part of the project “Cityprobe” supported by IMPRINT India Initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Savina Singla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singla, S., Bansal, D., Misra, A. et al. Towards an integrated framework for air quality monitoring and exposure estimation—a review. Environ Monit Assess 190, 562 (2018). https://doi.org/10.1007/s10661-018-6940-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6940-8

Keywords

Navigation