Skip to main content
Log in

Mercury accumulation and biotransportation in wetland biota affected by gold mining

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Phytoremediation is a cost-effective, eco-friendly technology for the removal of metals from polluted areas. In this study, six different plant species (Datura stramonium, Phragmites australis, Persicaria lapathifolia, Melilotus alba, Panicum coloratum, and Cyperus eragrostis) growing in a gold mine contaminated wetland were investigated as potential phytoremediators of mercury. The accumulation of total mercury and methylmercury in plant tissues was determined during the wet and dry seasons to establish the plants’ variability in accumulation. The highest accumulation of total mercury was in the tissues of Phragmites australis with recorded concentrations of 806, 495, and 833 μg kg−1 in the roots, stem, and leaves, respectively, during the dry season. The lowest accumulation levels were recorded for Melilotus alba during both seasons. The highest amount of the methylmercury was found in Phragmites australis during the dry season with a value of 618 μg kg−1. The accumulation and biotransportation were not significantly different between the seasons for some plants. The results of this study indicated that plants growing in wetlands can be used for phytoremediation of mercury and suggest the choice of species for constructed wetlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akcil, A., Erust, C., Ozdemiroglu, S., Fonti, V., & Beolchini, F. (2015). A review of approaches and techniques used in aquatic contaminated sediments: metal removal and stabilization by chemical and biotechnological processes. Journal of Cleaner Production, 86, 24–26. https://doi.org/10.1016/j.jclepro.2014.08.009.

    Article  CAS  Google Scholar 

  • Azevedo, R., & Rodriguez, E. (2012). Phytotoxicity of mercury in plants: a review. Journal of Botany, 2012, 1–6. https://doi.org/10.1155/2012/848614.

    Article  CAS  Google Scholar 

  • Boening, D. (2000). Ecological effects, transport, and fate of mercury: a general review. Chemosphere, 40(12), 1335–1351.

    Article  CAS  Google Scholar 

  • Březinová, T., & Vymazal, J. (2015). Evaluation of heavy metals seasonal accumulation in Phalaris arundinacea in a constructed treatment wetland. Ecological Engineering, 79, 94–99. https://doi.org/10.1016/j.ecoleng.2015.04.008.

    Article  Google Scholar 

  • Calderón, J., Gonçalves, S., Cordeiro, F., & de la Calle, B. (2013). Determination of methylmercury in seafood by direct mercury analysis: standard operating procedure (p. 80259). JRC.

  • Chen, J., & Yang, Z. M. (2012). Mercury toxicity, molecular response and tolerance in higher plants. BioMetals, 25(5), 847–857. https://doi.org/10.1007/s10534-012-9560-8.

    Article  CAS  Google Scholar 

  • Chen, G. Q., Li, J. S., Chen, B., Wen, C., Yang, Q., Alsaedi, A., & Hayat, T. (2016). An overview of mercury emissions by global fuel combustion: the impact of international trade. Renewable and Sustainable Energy Reviews, 65, 345–355. https://doi.org/10.1016/j.rser.2016.06.049.

    Article  CAS  Google Scholar 

  • Chibuike, G. U., & Obiora, S. C. (2014). Heavy metal polluted soils: effect on plants and bioremediation methods. Applied and Environmental Soil Science, 2014, 1–12. https://doi.org/10.1155/2014/752708.

    Article  CAS  Google Scholar 

  • Choppala, G., Saifullah, Bolan, N., Bibi, S., Iqbal, M., Rengel, Z., et al. (2014). Cellular mechanisms in higher plants governing tolerance to cadmium toxicity. Critical Reviews in Plant Sciences, 33(5), 374–391. https://doi.org/10.1080/07352689.2014.903747.

    Article  CAS  Google Scholar 

  • Dabrowski, J. M., Ashton, P. J., Murray, K., Leaner, J. J., & Mason, R. P. (2008). Anthropogenic mercury emissions in South Africa: coal combustion in power plants. Atmospheric Environment, 42(27), 6620–6626. https://doi.org/10.1016/j.atmosenv.2008.04.032.

    Article  CAS  Google Scholar 

  • De Simone, F., Gencarelli, C. N., Hedgecock, I. M., & Pirrone, N. (2016). A modeling comparison of mercury deposition from current anthropogenic mercury emission inventories. Environmental Science and Technology, 50(10), 5154–5162. https://doi.org/10.1021/acs.est.6b00691.

    Article  CAS  Google Scholar 

  • Deng, H., Ye, Z. H., & Wong, M. H. (2004). Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China. Environmental Pollution, 132(1), 29–40. https://doi.org/10.1016/j.envpol.2004.03.030.

    Article  CAS  Google Scholar 

  • Dombaiová, R. (2005). Mercury and methylmercury in plants from differently contaminated sites in Slovakia. Plant, Soil and Environment, 51(10), 456–463. https://doi.org/10.1002/jpln.200421635.

    Article  CAS  Google Scholar 

  • Dye, P. J., Jarmain, C., Oageng, B., Xaba, J., & Weiersbye, I. M. (2008). The potential of woodlands and reed-beds for control of acid mine drainage in the Witwatersrand gold fields, South Africa. Mine Closure, 2, 487–497.

    Google Scholar 

  • Edraki, M., Baumgartl, T., Manlapig, E., Bradshaw, D., Franks, D. M., & Moran, C. J. (2014). Designing mine tailings for better environmental, social and economic outcomes: a review of alternative approaches. Journal of Cleaner Production, 84(1), 411–420. https://doi.org/10.1016/j.jclepro.2014.04.079.

    Article  Google Scholar 

  • Fagerström, T., & Jernelöv, A. (1971). Formation of methyl mercury from pure mercuric sulphide in aerobic organic sediment. Water Research, 5(3), 121–122. https://doi.org/10.1016/0043-1354(71)90127-8.

    Article  Google Scholar 

  • Fashola, M. O., Ngole-Jeme, V. M., & Babalola, O. O. (2016). Heavy metal pollution from gold mines: environmental effects and bacterial strategies for resistance. International Journal of Environmental Research and Public Health, 13(11), 1–20. https://doi.org/10.3390/ijerph13111047.

    Article  CAS  Google Scholar 

  • Forstner, U., & Wittman, G. T. W. (1976). Metal accumulation in acidic waters from gold mines in South Africa. Geoforum, 7(1), 41–49.

    Article  Google Scholar 

  • Gabriel, M. C., & Williamson, D. G. (2004). Principal biogeochemical factors affecting the speciation and transport of mercury through the terrestrial environment. Environmental Geochemistry and Health, 26(3–4), 421–434. https://doi.org/10.1007/s10653-004-1308-0.

    Article  CAS  Google Scholar 

  • Galal, T. M., & Shehata, H. S. (2015). Bioaccumulation and translocation of heavy metals by Plantago major L. grown in contaminated soils under the effect of traffic pollution. Ecological Indicators, 48, 244–251. https://doi.org/10.1016/j.ecolind.2014.08.013.

    Article  CAS  Google Scholar 

  • García-Mercadoa, H. D., Fernándezb, G., Garzón-Zúñigac, M. A., & Durán-Domínguez-de-Bazúaa, M. d. C. (2017). Remediation of mercury-polluted soils using artificial wetlands. International Journal of Phytoremediation, 19(1), 3–13. https://doi.org/10.1080/15226514.2016.1216074.

    Article  CAS  Google Scholar 

  • Jiang, B., Xing, Y., Zhang, B., Cai, R., Zhang, D., & Sun, G. (2018). Effective phytoremediation of low-level heavy metals by native macrophytes in a vanadium mining area, China. Environmental Science and Pollution Research, 25(31), 31272–31282. https://doi.org/10.1007/s11356-018-3069-9.

    Article  CAS  Google Scholar 

  • Keller, B. E. M., Lajtha, K., & Cristofor, S. (1998). Trace metal concentrations in the sediments and plants of the Danube Delta, Romani. The society of wetland scientists, 18(1), 42–50.

    Article  Google Scholar 

  • Leguizamo, M. A., Fernandez Gomez, W. D., & Sarmiento, M. C. G. (2017). Native herbaceous plant species with potential use in phytoremediation of heavy metals, spotlight on wetlands: a review. Chemosphere, 168, 1230–1247. https://doi.org/10.1016/j.chemosphere.2016.10.075.

    Article  CAS  Google Scholar 

  • Li, Z., Ma, Z., Van der Kuijp, T. J., Yuan, Z., & Huang, L. (2014). A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Science of the Total Environment, 468–469, 843–853. https://doi.org/10.1016/j.scitotenv.2013.08.090.

    Article  CAS  Google Scholar 

  • Lusilao-Makiese, J. G., Tessier, E., Amouroux, D., Tutu, H., Chimuka, L., Weiersbye, I., & Cukrowska, E. M. (2014). Seasonal distribution and speciation of mercury in a gold mining area, north-west province, South Africa. Toxicological and Environmental Chemistry, 96(3), 387–402. https://doi.org/10.1080/02772248.2014.947987.

    Article  CAS  Google Scholar 

  • Lusilao-Makiese, J. G., Tessier, E., Amouroux, D., Tutu, H., Chimuka, L., Weiersbye, I., & Cukrowska, E. M. (2016). Mercury speciation and dispersion from an active gold mine at the west Wits area, South Africa. Environmental Monitoring and Assessment, 188(1), 1–11. https://doi.org/10.1007/s10661-015-5059-4.

    Article  CAS  Google Scholar 

  • MacDonald, D. D., Ingersoll, C. G., & Berger, T. A. (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination and Toxicology, 39(1), 20–31. https://doi.org/10.1007/s002440010075.

    Article  CAS  Google Scholar 

  • Maggi, C., Berducci, M. T., Bianchi, J., Giani, M., & Campanella, L. (2009). Methylmercury determination in marine sediment and organisms by Direct Mercury Analyser. Analytica Chimica Acta, 641(1), 32-36.

  • Mahar, A., Wang, P., Ali, A., Awasthi, M. K., Lahori, A. H., Wang, Q., Li, R., & Zhang, Z. (2016). Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotoxicology and Environmental Safety, 126, 111–121. https://doi.org/10.1016/j.ecoenv.2015.12.023.

    Article  CAS  Google Scholar 

  • Majid, S. N., Khwakaram, A. I., Rasul, G. A. M., & Ahmed, Z. H. (2014). Bioaccumulation, enrichment and translocation factors of some heavy metals in Typha Angustifolia and Phragmites Australis species growing along Qalyasan stream in Sulaimani city / IKR. Zankoy Sulaimani, 16(4), 93–109.

    Article  Google Scholar 

  • Marrugo-Negrete, J., Durango-Hernández, J., Pinedo-Hernández, J., Olivero-Verbel, J., & Díez, S. (2015). Phytoremediation of mercury-contaminated soils by Jatropha curcas. Chemosphere, 127, 58–63. https://doi.org/10.1016/j.chemosphere.2014.12.073.

    Article  CAS  Google Scholar 

  • McDaniel, W. (1991). Method 200.3 Sample preparation procedure for spectrochemical determination of total recoverable elements in biological tissues (pp. 24–29). Cincinnati, OH: Environmental Protection Agency.

  • Mendez, M. O., & Maier, R. M. (2008). Phytoremediation of mine tailings in temperate and arid environments. Reviews in Environmental Science and Biotechnology, 7(1), 47–59. https://doi.org/10.1007/s11157-007-9125-4.

    Article  CAS  Google Scholar 

  • Mukherjee, D. (2014). Selection and application of lime stabilizer for soil subgrade stabilization. International Journal of Innovative Science, Engineering & Technology, 1(7), 66–76 http://www.ijiset.com/v1s7/IJISET_V1_I7_12.pdf. Accessed July 2018

  • Núñez, S. E. R., Negrete, J. L. M., Rios, J. E. A., Hadad, H. R., & Maine, M. A. (2011). Hg, Cu, Pb, Cd, and Zn accumulation in macrophytes growing in tropical wetlands. Water, Air, and Soil Pollution, 216(1–4), 361–373. https://doi.org/10.1007/s11270-010-0538-2.

    Article  CAS  Google Scholar 

  • Odumo, B. O., Carbonell, G., Angeyo, H. K., Patel, J. P., Torrijos, M., & Rodríguez Martín, J. A. (2014). Impact of gold mining associated with mercury contamination in soil, biota sediments and tailings in Kenya. Environmental Science and Pollution Research, 21(21), 12426–12435. https://doi.org/10.1007/s11356-014-3190-3.

    Article  CAS  Google Scholar 

  • Oluyemi, E. A., Feuyit, G., Oyekunle, J. A. O., & Ogunfowokan, A. O. (2008). Seasonal variations in heavy metal concentrations in soil and some selected crops at a landfill in Nigeria. African Journal of Environmental Science and Technology, 2(5), 89–96.

    Google Scholar 

  • Pacyna, E. G., Pacyna, J. M., Steenhuisen, F., & Wilson, S. (2006). Global anthropogenic mercury emission inventory for 2000. Atmospheric Environment, 40, 4048–4063. https://doi.org/10.1016/j.atmosenv.2006.03.041.

    Article  CAS  Google Scholar 

  • Padmavathiamma, P. K., & Li, L. Y. (2007). Phytoremediation technology: hyper-accumulation metals in plants. Water, Air, and Soil Pollution, 184(1–4), 105–126. https://doi.org/10.1007/s11270-007-9401-5.

    Article  CAS  Google Scholar 

  • Pinedo-Hernández, J., Marrugo-Negrete, J., & Díez, S. (2015). Speciation and bioavailability of mercury in sediments impacted by gold mining in Colombia. Chemosphere, 119, 1289–1295. https://doi.org/10.1016/j.chemosphere.2014.09.044.

    Article  CAS  Google Scholar 

  • Pirrone, N., Cinnirella, S., Feng, X., Finkelman, R. B., Friedli, H. R., Leaner, J., Mason, R., Mukherjee, A. B., Stracher, G. B., Streets, D. G., & Telmer, K. (2010). Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmospheric Chemistry and Physics, 10, 5951–5964. https://doi.org/10.5194/acp-10-5951-2010.

    Article  CAS  Google Scholar 

  • Puga, A. P., Abreu, C. A., Melo, L. C. A., Paz-Ferreiro, J., & Beesley, L. (2015). Cadmium, lead, and zinc mobility and plant uptake in a mine soil amended with sugarcane straw biochar. Environmental Science and Pollution Research, 22(22), 17606–17614. https://doi.org/10.1007/s11356-015-4977-6.

    Article  CAS  Google Scholar 

  • Radulescu, C., Stihi, C., Popescu, I. V., Dulama, I. D., Chelarescu, E. D., & Chilian, A. (2013). Heavy metal accumulation and translocation in different parts of Brassica oleracea L. Romanian Journal of Physics, 58(9–10), 1337–1354.

    CAS  Google Scholar 

  • Rai, P. K. (2008). Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: an ecosustainable approach. International Journal of Phytoremediation, 10(2), 133–160. https://doi.org/10.1080/15226510801913918.

    Article  CAS  Google Scholar 

  • Rai, U. N., Upadhyay, A. K., Singh, N. K., Dwivedi, S., & Tripathi, R. D. (2015). Seasonal applicability of horizontal sub-surface flow constructed wetland for trace elements and nutrient removal from urban wastes to conserve Ganga river water quality at Haridwar, India. Ecological Engineering, 81, 115–122. https://doi.org/10.1016/j.ecoleng.2015.04.039.

    Article  Google Scholar 

  • Rezania, S., Mat, S., & Fadhil, M. (2016). Comprehensive review on phytotechnology: heavy metals removal by diverse aquatic plants species from wastewater. Journal of Hazardous Materials, 318, 587–599. https://doi.org/10.1016/j.jhazmat.2016.07.053.

    Article  CAS  Google Scholar 

  • Robinson, J. B., & Tuovinen, O. H. (1984). Mechanisms of microbial resistance and detoxification of mercury and organomercury compounds: physiological, biochemical, and genetic analyses. Microbiological Reviews, 48(2), 95–124.

    CAS  Google Scholar 

  • Sarwar, N., Imran, M., Shaheen, M. R., Ishaque, W., Kamran, M. A., Matloob, A., Rehim, A., & Hussain, S. (2017). Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere, 171, 710–721. https://doi.org/10.1016/j.chemosphere.2016.12.116.

    Article  CAS  Google Scholar 

  • Schonfeld, S. J., Winde, F., Albrecht, C., Kielkowski, D., Liefferink, M., Patel, M., Sewram, V., Stoch, L., Whitaker, C., Schüz, J., & workshop participants. (2014). Health effects in populations living around the uraniferous gold mine tailings in South Africa: gaps and opportunities for research. Cancer Epidemiology, 38(5), 628–632. https://doi.org/10.1016/j.canep.2014.06.003.

    Article  CAS  Google Scholar 

  • Schroeder, W. H., & Munthe, J. (1998). Atmospheric mercury: an overview. Atmospheric Environment, 32(5), 809–822. https://doi.org/10.1016/S1352-2310(97)00293-8.

    Article  CAS  Google Scholar 

  • Song, S., Selin, N. E., Soerensen, A. L., Angot, H., Artz, R., Brooks, S., Brunke, E. G., Conley, G., Dommergue, A., Ebinghaus, R., Holsen, T. M., Jaffe, D. A., Kang, S., Kelley, P., Luke, W. T., Magand, O., Marumoto, K., Pfaffhuber, K. A., Ren, X., Sheu, G. R., Slemr, F., Warneke, T., Weigelt, A., Weiss-Penzias, P., Wip, D. C., & Zhang, Q. (2015). Top-down constraints on atmospheric mercury emissions and implications for global biogeochemical cycling. Atmospheric Chemistry and Physics, 15(12), 7103–7125. https://doi.org/10.5194/acp-15-7103-2015.

    Article  CAS  Google Scholar 

  • Tangahu, B. V., Sheikh Abdullah, S. R., Basri, H., Idris, M., Anuar, N., & Mukhlisin, M. (2011). A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. International Journal of Chemical Engineering, 2011, 1–31. https://doi.org/10.1155/2011/939161.

    Article  Google Scholar 

  • Tsang, D. C. W., & Yip, A. C. K. (2014). Comparing chemical-enhanced washing and waste-based stabilisation approach for soil remediation. Journal of Soils and Sediments, 14(5), 936–947. https://doi.org/10.1007/s11368-013-0831-y.

    Article  CAS  Google Scholar 

  • Tutu, H., Cukrowska, E. M., Dohnal, V., & Havel, J. (2005). Application of artificial neural networks for classification of uranium distribution in the central rand goldfield, South Africa. Environmental Modeling and Assessment, 10(2), 143–152. https://doi.org/10.1007/s10666-005-0214-x.

    Article  Google Scholar 

  • Ullah, A., Heng, S., Munis, M. F. H., Fahad, S., & Yang, X. (2015). Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environmental and Experimental Botany, 117, 28–40. https://doi.org/10.1016/j.envexpbot.2015.05.001.

    Article  CAS  Google Scholar 

  • Ullrich, S. M., Tanton, T. W., & Abdrashitova, S. A. (2001). Mercury in the aquatic environment: a review of factors affecting methylation. Critical Reviews in Environmental Science and Technology, 31(3), 241–293. https://doi.org/10.1080/20016491089226.

    Article  CAS  Google Scholar 

  • Wang, J., Feng, X., Anderson, C. W. N., Xing, Y., & Shang, L. (2012). Remediation of mercury contaminated sites: a review. Journal of Hazardous Materials, 221–222, 1–18. https://doi.org/10.1016/j.jhazmat.2012.04.035.

    Article  CAS  Google Scholar 

  • Weiersbye, I. M., Witkowski, E. T. F., & Reichardt, M. (2006). Floristic composition of gold and uranium tailings dams, and adjacent polluted areas, on South Africa’s deep-level mines. Bothalia, 36(May), 101–127.

    Google Scholar 

  • Weis, J. S., & Weis, P. (2004). Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environment International, 30(5), 685–700. https://doi.org/10.1016/j.envint.2003.11.002.

    Article  CAS  Google Scholar 

  • Windham, L., Weis, J. S., Weis, P., & Peddrick, W. (2001). Patterns and processes of mercury release from leaves of two dominant salt marsh macrophytes Phragmites australis and Spartina alterniflora. Estuaries, 24(6A), 787–795. https://doi.org/10.2307/1353170.

    Article  Google Scholar 

  • Xu, J., Bravo, A. G., Lagerkvist, A., Bertilsson, S., Sjöblom, R., & Kumpiene, J. (2014). Sources and remediation techniques for mercury contaminated soil. Environment International, 74, 42–53. https://doi.org/10.1016/j.envint.2014.09.007.

    Article  CAS  Google Scholar 

  • Yang, S., Liang, S., Yi, L., Xu, B., Cao, J., Guo, Y., & Zhou, Y. (2014). Heavy metal accumulation and phytostabilization potential of dominant plant species growing on manganese mine tailings. Frontiers of Environmental Science and Engineering, 8(3), 394–404. https://doi.org/10.1007/s11783-013-0602-4.

    Article  CAS  Google Scholar 

  • Zhang, L., Wang, S., Wang, L., Wu, Y., Duan, L., Wu, Q., Wang, F., Yang, M., Yang, H., Hao, J., & Liu, X. (2015). Updated emission inventories for speciated atmospheric mercury from anthropogenic sources in China. Environmental Science and Technology, 49(5), 3185–3194. https://doi.org/10.1021/es504840m.

    Article  CAS  Google Scholar 

Download references

Funding

The authors thank the Water Research Commission of South Africa (Grant number K5/2394//3) for funding this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa Cukrowska.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mbanga, O., Ncube, S., Tutu, H. et al. Mercury accumulation and biotransportation in wetland biota affected by gold mining. Environ Monit Assess 191, 186 (2019). https://doi.org/10.1007/s10661-019-7329-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7329-z

Keywords

Navigation