Skip to main content

Advertisement

Log in

Geophysical and hydrogeological investigation for the saline water invasion in the coastal aquifers of West Bengal, India: a critical insight in the coastal saline clay–sand sediment system

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The Digha–Shankarpur area in West Bengal suffers from the problem of saline water intrusion in the near-surface to shallow subsurface aquifers. In the present study, geophysical surveys were conducted and integrated with measured hydrogeological parameters to delineate the possible locations of saline water–invaded zones in the shallow aquifers. One hundred eighty-eight groundwater samples were collected, and parameters like salinity, EC, total dissolved solids (TDS), pH, temperature, and water level were measured. The geophysical survey, such as resistivity profiling, self-potential, and electrical resistivity imaging techniques, was applied. High TDS, salinity, and EC were observed in various places. Resistivity profiling survey indicates a low resistivity zone (< 10 Ωm), self-potential anomaly indicates a positive anomaly and resistivity imaging survey indicated very low resistivity zones (0–3 Ωm) in near-surface to shallow subsurface locations which are concurrent with the other coastal aquifers in the eastern part of India. These low resistivity zones are interpreted as saline water intrusion zone mixed with clay/sand layers up to a depth of 15 m possibly due to the ingression of seawater and also due to anthropogenic activities. Hence, protection from seawater intrusion from the canals into the coastal aquifers (shallow and deep) and human-made activities should be restricted to minimize the effect of saline water pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Acharya, T., Kumbhakar, S., Prasad, R., Mondal, S., & Biswas, A. (2019). Delineation of potential groundwater recharge zones in the coastal area of north-eastern India using geoinformatics. Sustainable Water Resources Management, 5(2), 533–540.

    Article  Google Scholar 

  • Adeoti, L., Alile, O. M., & Uchegbulam, O. (2010). Geophysical investigation of saline water intrusion into freshwater aquifers: a case study of Oniru, Lagos State. Scientific Research and Essays, 5(3), 248–259.

    Google Scholar 

  • Ahmed, K. M., Bhattacharya, P., Hasan, M. A., Akhter, S. H., Alam, S. M. M., Bhuyian, M. A. H., Imam, M. B., Khan, A. A., & Sracek, O. (2004). Arsenic enrichment in groundwater of alluvial aquifers in Bangladesh: an overview. Applied Geochemistry, 19(2), 181–200.

    Article  CAS  Google Scholar 

  • Balasubramanian, M., Srinivasamoorthy, K., Gopinath, S., Saravanan, K., Prakash, R., Ravindran, A., & Sarma, V. S. (2018). Efficacy of diverse electrode configurations in 2D electrical resistivity imaging for effective delineation of saline water intrusion: Pondicherry coastal aquifers, India: a case study. Journal of Coastal Science, 5(1), 1–15.

    Google Scholar 

  • Bobba, A. G. (2002). Numerical modelling of saltwater intrusion due to human activities and sea-level change in the Godavari Delta, India. Hydrological Sciences Journal, 47(S1), 67–80.

    Article  Google Scholar 

  • Boleve, A., Janod, F., Revil, A., Lafon, A., & Fry, J.-J. (2011). Localization and quantification of leakages in dams using time-lapse self-potential measurements associated with salt tracer injection. Journal of Hydrology, 403(3–4), 242–252.

    Article  CAS  Google Scholar 

  • Burman, D., Mondal, M. K., Khan, Z. H., Sutradhar, A. K., & Kamal, F. A. (2019). Soil and water resources of Sundarbans. In H. Sen (Ed.), The Sundarbans: a disaster-prone eco-region, Coastal Research Library (Vol. 30, pp. 163–196).

    Chapter  Google Scholar 

  • CGWB. (2014). Report on status of groundwater quality in coastal aquifers of India, unpublished technical report, Bhujal Bhawan, Faridabad Govt. of India, 130p.

  • Choudhury, K., & Saha, D. K. (2004). Integrated geophysical and chemical study of saline water intrusion. Groundwater, 42(5), 671–677.

    Article  CAS  Google Scholar 

  • Choudhury, K., Saha, D. K., & Chakraborty, P. (2001). Geophysical study for saline water intrusion in a coastal alluvial terrain. Journal of Applied Geophysics, 46, 189–200.

    Article  Google Scholar 

  • Costall, A., Harris, B., & Pigois, J. P. (2018). Electrical resistivity imaging and the saline water interface in high-quality coastal aquifers. Surveys in Geophysics, 39, 753–816.

    Article  Google Scholar 

  • Delsman, J., Van Baaren, E. S., Siemon, B., Dabekaussen, W., Karaoulis, M. C., Pauw, P., Vermaas, T., Bootsma, H., De Louw, P. G. B., Gunnink, J. L., Dubelaar, W., Menkovic, A., Steuer, A., Meyer, U., Revil, A., & Oude Essink, G. H. P. (2018). Large-scale, probabilistic salinity mapping using airborne electromagnetics for groundwater management in Zeeland, the Netherlands. Environmental Research Letters, 13.

  • Ebrahim, A. A. M., Senosy, M. M., & Dahab, K. A. (1997). Geoelectrical and hydro-chemical studies for delineating groundwater contamination due to saltwater intrusion in the northern part of the Nile Delta, Egypt. Groundwater, 35(2), 216–222.

    Article  Google Scholar 

  • Eugster, H. P. (1986). Minerals in hot water. American Mineralogist, 71(5–6), 655–673.

    CAS  Google Scholar 

  • Freeze, A. R., & Cherry, J. A. (1979). Groundwater. New Jersey: Prentice Hall Inc..

    Google Scholar 

  • Frohlich, R. K., Urish, D. W., Fuller, J., & Reilly, M. O. (1994). Use of geoelectrical method in groundwater pollution surveys in a coastal environment. Journal of Applied Geophysics, 32, 139–154.

    Article  Google Scholar 

  • Gautam, P. K., & Biswas, A. (2016). 2D geo-electrical imaging for shallow depth investigation in Doon Valley sub-Himalaya, Uttarakhand, India. Modeling Earth Systems and Environment, 2(4), 175.

    Article  Google Scholar 

  • Goebel, M., Pidlisecky, A., & Knight, A. (2017). Resistivity imaging reveals complex pattern of saltwater intrusion along Monterey coast. Journal of Hydrology, 551, 746–755.

    Article  Google Scholar 

  • Golshan, M., Colombani, N., & Mastrocicco, M. (2018). Assessing aquifer salinization with multiple techniques along the Southern Caspian Sea Shore (Iran). Water, 10(348), 2–17.

    Google Scholar 

  • Gopinath, S., Srinivasamoorthy, K., Saravanan, K., Suma, C. S., Prakash, R., Senthinathan, D., & Sarma, V. S. (2018). Vertical electrical sounding for mapping saline water intrusion in coastal aquifers of Nagapattinam and Karaikal, South India. Sustainable Water Resources Management, 4, 833–841.

    Article  Google Scholar 

  • Gopinath, S., Srinivasamoorthy, K., Saravanan, K., & Prakash, R. (2019). Discriminating groundwater salinization processes in coastal aquifers of southeastern India: geophysical, hydrogeochemical and numerical modeling approach. Environment, Development and Sustainability, 21, 2443–2458.

    Article  Google Scholar 

  • Goswami, P. K., & Bose, G. C. (1981). Water resources of West Bengal, School of Water Resources Engineering, Jadavpur University Publication, Calcutta, 238pp.

  • Gurunadha Rao, V. V. S., Thamma Rao, G., Surinaidu, L., Rajesh, R., & Mahesh, J. (2011). Geophysical and geochemical approach for seawater intrusion assessment in the Godavari Delta Basin, A.P., India. Water, Air, and Soil Pollution, 217, 503–514.

    Article  CAS  Google Scholar 

  • Hamzah, U., Samsudin, A. R., & Malim, E. P. (2007). Ground-water investigation in Kuala Selangor using vertical electrical sounding (VES) surveys. Environmental Geology, 51(8), 1349–1359.

    Article  CAS  Google Scholar 

  • Hodlur, G. K., Dhakate, R., Sirisha, T., & Panaskar, D. B. (2010). Resolution of freshwater and saline water aquifers by composite geophysical data analysis methods. Hydrological Sciences Journal, 55(3), 414–434.

    Article  CAS  Google Scholar 

  • Hunt R. E. (2005). Geotechnical engineering investigation. Hand book, second edition, pp 56–63.

  • Jana, A., Biswas, A., Maiti, S., & Bhattacharya, A. K. (2014). Shoreline changes in response to sea level rise along Digha Coast, Eastern India: an analytical approach of remote sensing, GIS and statistical techniques. Journal of Coastal Conservation, 18, 145–155.

    Article  Google Scholar 

  • Jones, B. F., Vengosh, A., Roshenthal, E., & Yechelli, T. (1999). Geo-chemical investigations: Seawater intrusion in coastal aquifer concepts, methods and practices. In J. Bear (Ed.). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Kaliraj, S., Chandrasekar, N., Ramachandran, K. K., & Selvakumar, S. (2019). Seawater intrusion vulnerability in the coastal aquifers of southern India—an appraisal of the GALDIT model, parameters’ sensitivity, and hydrochemical indicators. Environmental Science and Pollution Research, 26, 9755–9784.

    Article  CAS  Google Scholar 

  • Kanagaraj, G., Elango, L., Sridhar, S. G. D., & Gowrishankar, G. (2018). Hydrogeochemical processes and influence of seawater intrusion in coastal aquifers south of Chennai, Tamil Nadu, India. Environmental Science and Pollution Research, 25(9), 8989–9011.

    Article  CAS  Google Scholar 

  • Kaur, H., Gupta, S., Parkash, S., Thapa, R., & Mandal, R. (2017). Geospatial modelling of flood susceptibility pattern in a subtropical area of West Bengal, India. Environment and Earth Science, 76(339), 1–22.

    CAS  Google Scholar 

  • Khaki, M., Yusoff, I., & Islami, N. (2016). Electrical resistivity imaging and hydrochemical analysis for groundwater investigation in Kuala Langat, Malaysia. Hydrological Sciences Journal, 61(4), 751–762.

    Article  CAS  Google Scholar 

  • Krishnan, M. S. (1982). Geology of India and Burma (6th ed.). CBS Publishers & Distributors 536p.

  • Kumar, B., Rao, M. S., Gupta, A. K., & Purushothaman, P. (2011). Groundwater management in a coastal aquifer in Krishna River Delta, South India using isotopic approach. Current Science India, 100(7), 1032–1043.

    CAS  Google Scholar 

  • Kumar, V. S., Dhakate, R., & Sankaran, B. A. S. (2016). Application of ERT and GPR for demarcating the saline water intrusion in coastal aquifers of Southern India. Environment and Earth Science, 75(5), 1–17.

    Google Scholar 

  • Kura, N. U., Ramli, M. F., Ibrahim, S., Sulaiman, W. N. A., & Aris, A. Z. (2014). An integrated assessment of seawater intrusion in a small tropical island using geophysical, geochemical, and geostatistical techniques. Environmental Science and Pollution Research, 21(11), 7047–7064.

    Article  CAS  Google Scholar 

  • Laluraj, C. M., Gopinath, G., & Dineshkumar, P. K. (2005). Groundwater chemistry of shallow aquifers in the coastal zones of Cochin, India. Applied Ecology and Environmental Research, 3(1), 133–139.

    Article  Google Scholar 

  • Loke, M. H. (2001). Electrical imaging surveys for environmental and engineering studies. A practical guide to 2-D and 3-D surveys. RES2DINV manual.

  • Maillet, G. M., Rizzo, E., Revil, A., & Vella, C. (2005). High-resolution electrical resistivity tomography (ERT) in a transition zone environment: application for detailed internal architecture and infilling processes study of a Rhône River paleo-channel. Marine Geophysical Researches, 26, 317–328.

    Article  Google Scholar 

  • Manivannan, V., & Elango, L. (2019). Seawater intrusion and submarine groundwater discharge along the Indian coast. Environmental Science and Pollution Research, 26, 31592–31608.

    Article  Google Scholar 

  • Martinez-Pagan, P., Jardani, A., Revil, A., & Haas, A. (2010). Self-potential monitoring of a salt plume. Geophysics, 75(4), 17–25.

    Article  Google Scholar 

  • Meyer, R., Engesgaard, P., & Sonnenborg TO. (2019). Origin and dynamics of saltwater intrusion in a regional aquifer: combining 3-D saltwater modelling with geophysical and geochemical data. Water Resources Research, 55, 1792–1813.

    Article  CAS  Google Scholar 

  • Monsur, M. H., Tooley, M. J., Ghatak, G. S., Chandra, P. R., Roy, R. K., Adhikari, P. C., & Akhter, S. H. (2001). A review and correlation of Quaternary deposits exposed in the Bengal Basin and its surrounding areas. Bangladesh Journal of Geology, 20, 33–54.

    Google Scholar 

  • Naidu, L. S., G. Rao, V. V. S., T. Rao, G., Mahesh, J., Padalu, G., Sarma, V. S., Prasad, P. R., Rao, S. M., & BM, R. R. (2013). An integrated approach to investigate saline water intrusion and to identify the salinity sources in the Central Godavari delta, Andhra Pradesh, India. Arabian Journal of Geosciences, 6, 3709–3724.

    Article  Google Scholar 

  • Naik, P. K., Dehury, B. N., & Tiwary, A. N. (2007). Groundwater pollution around an industrial area in the coastal stretch of Maharastra state, India. Environmental Monitoring and Assessment, 132, 207–233.

    Article  CAS  Google Scholar 

  • Najib, S., Fadili, A., Mehdi, K., Riss, J., & Makan, A. (2017). Contribution of hydrochemical and geoelectrical approaches to investigate salinization process and seawater intrusion in the coastal aquifers of Chaouia, Morocco. Journal of Contaminant Hydrology, 198, 24–36.

    Article  CAS  Google Scholar 

  • Nowroozi, A. A., Stephen, B. H., & Henderson, P. (1999). Saltwater intrusion into the freshwater aquifer in the eastern shore of Virginia: a reconnaissance electrical resistivity survey. Journal of Applied Geophysics, 42, 1–22.

    Article  Google Scholar 

  • Omosuyi, G. O., Ojo, J. S., & Olorunfemi, M. O. (1999). Borehole lithologic correlation and aquifer delineation in parts of the coastal basin of SW Nigeria. Journal of Applied Sciences, 2, 617–626.

    Google Scholar 

  • Panda K P, Sharma S P, Jha M K, 2018, Mapping lithological variations in a river basin of West Bengal, India using electrical resistivity survey: implications for artificial recharge, Environment and Earth Science (2018) 77: 626.

  • Parizi, E., Hosseini, S. M., Ataie-Ashtiani, B., & Simmons, C. T. (2019). Vulnerability mapping of coastal aquifers to seawater intrusion: review, development and application. Journal of Hydrology, 570, 555–573.

    Article  Google Scholar 

  • Patra, H. P., & Bhattacharya, P. K. (1966). Geophysical exploration for groundwater around Digha in the coastal region of West-Bengal, India. Geoexploration, 4, 209–218.

    Article  Google Scholar 

  • Pujari, P., & Soni, A. K. (2009). Seawater intrusion studies near Kovaya limestone mine, Saurashtra coast, India. Environmental Monitoring and Assessment, 154, 93–109.

    Article  CAS  Google Scholar 

  • Ravenscroft, P., Burgess, W. G., Ahmed, K. M., Burren, M., & Perrin, J. (2005). Arsenic in groundwater of the Bengal Basin, Bangladesh: distribution, field relations, and hydrogeological setting. Hydrogeology Journal, 13, 727–751.

    Article  CAS  Google Scholar 

  • Roy, R. K., & Chattopadhyay, G. S. (1997). Quaternary geology of the environs of Ganga Delta, West Bengal and Bihar. Indian Journal of Geology, 69(2), 177–209.

    Google Scholar 

  • Sankaran, S., Sonkamble, S., Krishnakumar, K., & Mondal, N. C. (2012). Integrated approach for demarcating subsurface pollution and saline water intrusion zones in SIPCOT area: a case study from Cuddalore in Southern India. Environmental Monitoring and Assessment, 184, 5121–5138.

    Article  CAS  Google Scholar 

  • Sathish, S., Elango, L., Rajesh, R., & Sarma, V. S. (2011). Assessment of seawater mixing in a coastal aquifer by high-resolution electrical resistivity tomography. International Journal of Environmental Science and Technology, 8(3), 483–492.

    Article  CAS  Google Scholar 

  • Satriani, A., Loperte, A., & Proto, M. (2011). Electrical resistivity tomography for coastal salt water intrusion characterization along the Ionian coast of Basilicata Region (southern Italy). International Water Technology Journal, 1(1), 83–90.

    Google Scholar 

  • Saxena, V. K., Mondal, N. C., & Singh, V. S. (2004). Evaluation of hydrogeochemical parameters to delineate fresh groundwater zones in coastal aquifers. Journal of Applied Geochemistry, 6, 245–254.

    CAS  Google Scholar 

  • Saxena, V. K., Singh, V. S., Mondal, N. C., & Maurya, A. K. (2005). Quality of groundwater from Neil Island, Andaman & Nicobar, India. Journal of Applied Geochemistry, 7, 201–206.

    CAS  Google Scholar 

  • Senthilkumar, S., Vinodh, K., Johnson Babu, G., Gowtham, B., & Arulprakasam, V. (2019). Integrated seawater intrusion study of coastal region of Thiruvallur district, Tamil Nadu, South India. Applied Water Science, 9, 124.

    Article  CAS  Google Scholar 

  • Shahid, S., & Nath, S. K. (2000). GIS integration of remote sensing and electrical sounding data for hydrogeological exploration. Journal of Spatial Hydrology, 2(1), 1–12.

    Google Scholar 

  • Singhal, B. B. S. (1963). Occurrence and geochemistry of ground water in the coastal region of Midnapur, West Bengal, India. Economic Geology, 58(4), 419–433.

    Article  CAS  Google Scholar 

  • Soni, A. K., & Pujari, P. R. (2010). Ground water vis-a-vis sea water intrusion analysis for a part of limestone tract of Gujarat Coast, India. Journal of Water Resource and Protection, 2(5), 462–468.

    Article  CAS  Google Scholar 

  • Telford, W. M., Geldart, L. P., & Sheriff, R. E. (1990). Applied geophysics. London: Cambridge University Press.

    Book  Google Scholar 

  • Urish, D. W., & Frohlich, R. K. (1990). Surface electrical resistivity in coastal groundwater exploration. Geoexploration, 26(4), 267–289.

    Article  Google Scholar 

  • Vann, S., Puttiwongark, A., Suteerasak, T., & Koedsin, W. (2020). Delineation of seawater intrusion using geo-electrical survey in a coastal aquifer of Kamala Beach, Phuket, Thailand. Water, 12, 506.

    Article  CAS  Google Scholar 

  • Voudouris, K. S. (2006). Groundwater balance and safe yield of the coastal aquifer system in NEastern Korinthia, Greece. Applied Geography, 26, 291–311.

    Article  Google Scholar 

  • WHO. (2004). Guidelines for drinking-water quality (Vol. 1, 3rd ed.p. 515). Geneva: World Health Organization Recommendations.

    Google Scholar 

  • Wilson, S. R., Ingham, M., & McConchie, J. A. (2006). The applicability of earth resistivity methods for saline interface definition. Journal of Hydrology, 316, 301–312.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the associate editor (Prof. Yu-Pin Lin) and two anonymous reviewers for their constructive comments and suggestions which helped us to improve the quality of the work. This work is a part of the Ph.D. thesis of the first author (PK). This work is a collaboration between AB and TA. TA gratefully acknowledges FRPDF, Presidency University, for carrying out this research work. The authors also acknowledge the support from Archita Bhattacharyya, Tanmay Sarkar, Manish Chakraborty, and Bikramaditya Mandal during fieldwork.

Funding

AB received funding from the University Grant Commission for this work as a start-up Research Grant (Nos. F.30-431/2018-BSR and M-14-59 BHU). TA received the financial support of DST Technology Mission (No. DST/TM/WTI/2K12/42).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arkoprovo Biswas.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Tiwari, P., Biswas, A. et al. Geophysical and hydrogeological investigation for the saline water invasion in the coastal aquifers of West Bengal, India: a critical insight in the coastal saline clay–sand sediment system. Environ Monit Assess 192, 562 (2020). https://doi.org/10.1007/s10661-020-08520-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08520-x

Keywords

Navigation