Skip to main content
Log in

Monitoring and detecting faults in wastewater treatment plants using deep learning

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Wastewater treatment plants use many sensors to control energy consumption and discharge quality. These sensors produce a vast amount of data which can be efficiently monitored by automatic systems. Consequently, several different statistical and learning methods are proposed in the literature which can automatically detect faults. While these methods have shown promising results, the nonlinear dynamics and complex interactions of the variables in wastewater data necessitate more powerful methods with higher learning capacities. In response, this study focusses on modelling faults in the oxidation and nitrification process. Specifically, this study investigates a method based on deep neural networks (specifically, long short-term memory) compared with statistical and traditional machine-learning methods. The network is specifically designed to capture temporal behaviour of sensor data. The proposed method is evaluated on a real-life dataset containing over 5.1 million sensor data points. The method achieved a fault detection rate (recall) of over 92%, thus outperforming traditional methods and enabling timely detection of collective faults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Víegas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X. (2015). TensorFlow: Large-scale machine learning on heterogeneous systems. http://tensorflow.org/.

  • Ansari, M., Othman, F., Abunama, T., & El-Shafie, A. (2018). Analysing the accuracy of machine learning techniques to develop an integrated influent time series model: Case study of a sewage treatment plant, Malaysia. Environmental Science and Pollution Research, 25(12), 12139–12149.

    Article  Google Scholar 

  • Bo, C., Wu, M. (2009). Research of intrusion detection based on principal components analysis. In: 2009 Second International Conference on Information and Computing Science. pp. 116–119.

  • Boyd, G., Na, D., Li, Z., Snowling, S., Zhang, Q., & Zhou, P. (2019). Influent forecasting for wastewater treatment plants in North America. Sustainability, 11(6), 1764.

    Article  Google Scholar 

  • Carlsson, B., & Zambrano, J. (2016). Fault detection and isolation of sensors in aeration control systems. Water Science and Technology, 73, 648–653.

    Article  Google Scholar 

  • Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey. ACM Computing Surveys (CSUR), 41(3), 15.

    Article  Google Scholar 

  • Che Mid, E., & Dua, V. (2018). Fault detection in wastewater treatment systems using multiparametric programming. Processes, 6(11), 231.

    Article  Google Scholar 

  • Chen, A., Zhou, H., An, Y., Sun, W. (2016). Pca and pls monitoring approaches for fault detection of wastewater treatment process. In Proceedings of the 2016 IEEE 25th International Symposium on Industrial Electronics (ISIE), Santa Clara, CA, USA, 8–10 June 2016; pp. 1022–1027.

  • Cheng, C.-Y., Hsu, C.-C., & Chen, M.-C. (2010). Adaptive kernel principal component analysis (kpca) for monitoring small disturbances of nonlinear processes. Industrial & Engineering Chemistry Research, 49(5), 2254–2262.

    Article  CAS  Google Scholar 

  • Chollet, F., et al. (2015). Keras. https://github.com/fchollet/keras.

  • Corominas, L., Garrido-Baserba, M., Villez, K., Olsson, G., Cortés, U., & Poch, M. (2018). Transforming data into knowledge for improved wastewater treatment operation: A critical review of techniques. Environmental Modelling & Software, 106, 89–103.

    Article  Google Scholar 

  • Dellana, S. A., & West, D. (2009). Predictive modeling for wastewater applications: Linear and nonlinear approaches. Environmental Modelling & Software, 24(1), 96–106.

    Article  Google Scholar 

  • Deng, X., & Tian, X. (2013). Nonlinear process fault pattern recognition using statistics kernel pca similarity factor. Neurocomputing, 121, 298–308.

    Article  Google Scholar 

  • Du, X., Wang, J., Jegatheesan, V., & Shi, G. (2018). Dissolved oxygen control in activated sludge process using a neural network-based adaptive pid algorithm. Applied Sciences, 8(2), 261.

    Article  Google Scholar 

  • Fan, X.-W., Du, S.-X., & Wu, T.-J. (2004). Rough support vector machine and its application to wastewater treatment processes. Control and Decision., 19, 573–576.

    Google Scholar 

  • Garcıa-Alvarez, D. (2009). Fault detection using principal component analysis (pca) in a wastewater treatment plant (wwtp). In: Proceedings of the International Students Scientific Conference. pp. 1–10.

  • George, A. (2012). Anomaly detection based on machine learning: dimensionality reduction using pca and classification using svm. International Journal of Computer Applications, 47(21).

  • Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y. (2016). Deep learning. Vol. 1. MIT, Cambridge.

  • Granata, F., Papirio, S., Esposito, G., Gargano, R., & de Marinis, G. (2017). Machine learning algorithms for the forecasting of wastewater quality indicators. Water, 9(2), 105.

    Article  Google Scholar 

  • Grieu, S., Thiery, F., Traoré, A., Nguyen, T. P., Barreau, M., & Polit, M. (2006). Ksom and mlp neural networks for on-line estimating the efficiency of an activated sludge process. Chemical Engineering Journal, 116(1), 1–11.

    Article  CAS  Google Scholar 

  • Grieu, S., Traoré, A., Polit, M. (2001). Fault detection in a wastewater treatment plant. In: Emerging Technologies and Factory Automation, 2001. Proceedings. 2001 8th IEEE International Conference on. IEEE, pp. 399–402.

  • Hamed, M. M., Khalafallah, M. G., & Hassanien, E. A. (2004). Prediction of wastewater treatment plant performance using artificial neural networks. Environmental Modelling & Software, 19(10), 919–928.

    Article  Google Scholar 

  • Hermans, M., Schrauwen, B. (2013). Training and analysing deep recurrent neural networks. In: Advances in neural information processing systems. pp. 190–198.

  • Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780.

    Article  CAS  Google Scholar 

  • Honggui, H., Ying, L., & Junfei, Q. (2014). A fuzzy neural network approach for online fault detection in waste water treatment process. Computers and Electrical Engineering, 40, 2216–2226.

    Article  Google Scholar 

  • Jin, G., & Englande Jr., A. (2006). Prediction of swimmability in a brackish water body. Management of Environmental Quality: An International Journal, 17(2), 197–208.

    Article  Google Scholar 

  • Kingma, D. P., Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

  • Maier, H. R., & Dandy, G. C. (2000). Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications. Environmental Modelling & Software, 15(1), 101–124.

    Article  Google Scholar 

  • Olah, C. (2015). http://colah.github.io/posts/2015-08-Understanding-LSTMs.

  • Oliveira-Esquerre, K. P., Seborg, D. E., Bruns, R. E., & Mori, M. (2004). Application of steady-state and dynamic modeling for the prediction of the bod of an aerated lagoon at a pulp and paper mill: Part i. linear approaches. Chemical Engineering Journal, 104(1-3), 73–81.

    Article  CAS  Google Scholar 

  • Olsson, G., Newell, B. (1999). Wastewater treatment systems. IWA, London.

  • Padhee, S., Gupta, N., & Kaur, G. (2012). Data driven multivariate technique for fault detection of waste water treatment plant. International Journal of Engineering and Advanced Technology, 1, 45.

    Google Scholar 

  • Pena, E. H. M., de Assis, M. V. O., Proena, M. L. (2013). Anomaly detection using forecasting methods arima and hwds. In: 2013 32nd International Conference of the Chilean Computer Science Society (SCCC). pp. 63–66.

  • Poch, M., Comas, J., Rodríguez-Roda, I., Sanchez-Marre, M., & Cortés, U. (2004). Designing and building real environmental decision support systems. Environmental Modelling & Software, 19(9), 857–873.

    Article  Google Scholar 

  • Sanchez-Fernández, A., Fuente, M.J., Sainz-Palmero, G.I. (2015) Fault detection in wastewater treatment plants using distributed pca methods. 2015 IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA), Luxembourg, Germany, 8–11 September pp. 1–7.

  • Shewhart, W. A. (1931). Economic control of quality of manufactured product. ASQ Quality Press, Milwaukee.

  • Smith, L. I. (2002). A tutorial on principal components analysis. Tech. rep., Department of Computer Science, University of Otago, New Zealand.

  • Sun, A.Y., Scanlon, B.R. (2019). How can big data and machine learning benefit environment and water management: A survey of methods, applications, and future directions. Environmental Research Letters.

  • Tron, T., Resheff, Y. S., Bazhmin, M., Weinshall, D., Peled, A. (2018). Arima-based motor anomaly detection in schizophrenia inpatients. In: Biomedical & Health Informatics (BHI), 2018 IEEE EMBS International Conference on. IEEE, pp. 430–433.

  • Villez, K., Vanrolleghem, P. A., & Corominas, L. (2016). Optimal flow sensor placement on wastewater treatment plants. Water Research, 101, 75–83.

    Article  CAS  Google Scholar 

  • Waibel, A. (1989). Modular construction of time-delay neural networks for speech recognition. Neural Computation, 1(1), 39–46.

    Article  Google Scholar 

  • Xiao, H., Huang, D., Pan, Y., Liu, Y., & Song, K. (2017). Fault diagnosis and prognosis of wastewater processes with incomplete data by the auto-associative neural networks and Arma model. Chemometrics and Intelligent Laboratory Systems, 161, 96–107.

    Article  CAS  Google Scholar 

  • Yaacob, A. H., Tan, I. K. T., Chien, S. F., Tan, H. K. (2010). Arima based network anomaly detection. In: 2010 Second International Conference on Communication Software and Networks. pp. 205–209.

  • Yoo, C. K., Villez, K., Van Hulle, S. W., & Vanrolleghem, P. A. (2008). Enhanced process monitoring for wastewater treatment systems. Environmetrics: The official journal of the International Environmetrics Society, 19(6), 602–617.

    Article  CAS  Google Scholar 

  • Zhang, D., Hølland, E. S., Lindholm, G., & Ratnaweera, H. (2017). Hydraulic modeling and deep learning based flow forecasting for optimizing inter catchment wastewater transfer. Journal of Hydrology, 567, 792–802.

    Article  Google Scholar 

  • Zhang, D., Holland, E. S., Lindholm, G., Ratnaweera, H. (2018). Enhancing operation of a sewage pumping station for inter catchment wastewater transfer by using deep learning and hydraulic model. arXiv preprint arXiv:1811.06367.

  • Zhang, Q., Li, Z., Snowling, S., Siam, A., & El-Dakhakhni, W. (2019). Predictive models for wastewater flow forecasting based on time series analysis and artificial neural network. Water Science and Technology, 80(2), 243–253.

    Article  Google Scholar 

  • Zhou, P., Li, Z., Snowling, S., Baetz, B. W., Na, D., & Boyd, G. (2019). A random forest model for inflow prediction at wastewater treatment plants. Stochastic Environmental Research and Risk Assessment, 33(10), 1781–1792.

    Article  Google Scholar 

  • Zhou, P., Li, Z., Snowling, S., Goel, R., & Zhang, Q. (2019). Short-term wastewater influent prediction based on random forests and multi-layer perceptron. Journal of Environmental Informatics Letters, 1(2), 87–93.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venet Osmani.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamandipoor, B., Majd, M., Sheikhalishahi, S. et al. Monitoring and detecting faults in wastewater treatment plants using deep learning. Environ Monit Assess 192, 148 (2020). https://doi.org/10.1007/s10661-020-8064-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-8064-1

Keywords

Navigation