Skip to main content

Advertisement

Log in

Spatial distribution and risk assessment of agricultural soil pollution by hazardous elements in a transboundary river basin

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The present study aimed to evaluate the sources of pollution and the potential human and ecological risks of hazardous elements (HEs) in 40 hotspot sites of the agricultural soil around the Arvand River, Iran. The mean concentrations of As, Cd, Co, Cr, Ni, Pb, Zn, and Hg were measured to be 7.2, 0.8, 14.0, 67.9, 69.5, 63.0, 296, and 0.66 (mg kg−1), respectively. With the exception of Ni, the mean concentrations of all the elements were found to be higher than those in the background. The spatial distribution of HEs in the study area indicated an increasing trend of contamination from the north to the south. Pb, Zn, and Hg were the most enriched elements, resulting in a high pollution load. Moreover, the agricultural soil of the study area was threatened by a very high ecological risk due to the contribution of Hg, Cd, and Pb. Multivariate statistical analyses determined that the pollution sources are specified by the oil refinery emissions and effluents, irrigation with polluted water, fertilizers, dust storms, and airport emissions. The carcinogenic risk of HEs in both adults and children revealed an acceptable level; however, children faced a great chance of non-carcinogenic risk. The results provide a scientific basis for monitoring HEs and managing health risks via effective methods in the agricultural areas of the Arvand River basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data is available in supplementary file.

References

  • Adimalla, N. (2020a). Heavy metals pollution assessment and its associated human health risk evaluation of urban soils from Indian cities: a review. Environmental Geochemistry and Health, 42(1), 173–190.

    Article  CAS  Google Scholar 

  • Adimalla, N. (2020b). Heavy metals contamination in urban surface soils of Medak province, India, and its risk assessment and spatial distribution. Environmental Geochemistry and Health, 42(1), 59–75.

    Article  CAS  Google Scholar 

  • Adimalla, N., Qian, H., & Wang, H. (2019). Assessment of heavy metal (HM) contamination in agricultural soil lands in northern Telangana, India: an approach of spatial distribution and multivariate statistical analysis. Environmental monitoring and assessment, 191(4), 246.

    Article  Google Scholar 

  • Adimalla, N., Qian, H., Nandan, M. J., & Hursthouse, A. S. (2020). Potentially toxic elements (PTEs) pollution in surface soils in a typical urban region of south India: An application of health risk assessment and distribution pattern. Ecotoxicology and Environmental Safety, 203, 111055.

    Article  CAS  Google Scholar 

  • Al-Wabel, M. I., Sallam, A. E. A. S., Usman, A. R., Ahmad, M., El-Naggar, A. H., El-Saeid, M. H., & Al-Romian, F. A. (2017). Trace metal levels, sources, and ecological risk assessment in a densely agricultural area from Saudi Arabia. Environmental monitoring and assessment, 189(6), 252.

    Article  Google Scholar 

  • Baltas, H., Sirin, M., Gökbayrak, E., & Ozcelik, A. E. (2020). A case study on pollution and a human health risk assessment of heavy metals in agricultural soils around Sinop province, Turkey. Chemosphere, 241, 125015.

    Article  CAS  Google Scholar 

  • Briki, M., Ji, H., Li, C., Ding, H., & Gao, Y. (2015). Characterization, distribution, and risk assessment of heavy metals in agricultural soil and products around mining and smelting areas of Hezhang, China. Environmental monitoring and assessment, 187(12), 767.

    Article  Google Scholar 

  • Cai, L. M., Wang, Q. S., Wen, H. H., Luo, J., & Wang, S. (2019). Heavy metals in agricultural soils from a typical township in Guangdong Province, China: Occurrences and spatial distribution. Ecotoxicology and environmental safety, 168, 184–191.

    Article  CAS  Google Scholar 

  • Cai, L., Xu, Z., Bao, P., He, M., Dou, L., Chen, L., & Zhu, Y. G. (2015). Multivariate and geostatistical analyses of the spatial distribution and source of arsenic and heavy metals in the agricultural soils in Shunde, Southeast China. Journal of Geochemical Exploration, 148, 189–195.

    Article  CAS  Google Scholar 

  • Castro-González, N. P., Calderón-Sánchez, F., Moreno-Rojas, R., Moreno-Ortega, A., & Tamariz-Flores, J. V. (2017). Health risks in rural populations due to heavy metals found in agricultural soils irrigated with wastewater in the Alto Balsas sub-basin in Tlaxcala and Puebla, Mexico. International journal of environmental health research, 27(6), 476–486.

    Article  Google Scholar 

  • CCME. (2007). Canadian soil quality guidelines for the protection of environmental and human health: Summary tables. Canada Council of Ministers of the Environment.

    Google Scholar 

  • Chai, Y., Guo, J., Chai, S., Cai, J., Xue, L., & Zhang, Q. (2015). Source identification of eight heavy metals in grassland soils by multivariate analysis from the Baicheng-Songyuan area, Jilin Province, Northeast China. Chemosphere, 134, 67–75.

    Article  CAS  Google Scholar 

  • Chen, H., Teng, Y., Lu, S., Wang, Y., & Wang, J. (2015). Contamination features and health risk of soil heavy metals in China. Science of the total environment, 512, 143–153.

    Article  Google Scholar 

  • Chen, R., Chen, H., Song, L., Yao, Z., Meng, F., & Teng, Y. (2019). Characterization and source apportionment of heavy metals in the sediments of Lake Tai (China) and its surrounding soils. Science of The Total Environment, 694, 133819.

    Article  CAS  Google Scholar 

  • Chung, S. Y., Venkatramanan, S., Park, N., Ramkumar, T., Sujitha, S. B., & Jonathan, M. P. (2016). Evaluation of physico-chemical parameters in water and total heavy metals in sediments at Nakdong River Basin, Korea. Environmental Earth Sciences, 75(1), 50.

    Article  Google Scholar 

  • Cui, X., Wang, X., & Liu, B. (2020). The characteristics of heavy metal pollution in surface dust in Tangshan, a heavily industrialized city in North China, and an assessment of associated health risks. Journal of Geochemical Exploration, 210(106432), 17.

    Google Scholar 

  • Cui, Z., Wang, Y., Zhao, N., Yu, R., Xu, G., & Yu, Y. (2018). Spatial distribution and risk assessment of heavy metals in Paddy soils of Yongshuyu irrigation area from Songhua River Basin, Northeast China. Chinese Geographical Science, 28(5), 797–809.

    Article  Google Scholar 

  • De Miguel, E., Iribarren, I., Chacon, E., Ordonez, A., & Charlesworth, S. (2007). Risk-based evaluation of the exposure of children to trace elements in playgrounds in Madrid (Spain). Chemosphere, 66(3), 505–513.

    Article  Google Scholar 

  • Deng, Y., Jiang, L., Xu, L., Hao, X., Zhang, S., Xu, M., & Liu, X. (2019). Spatial distribution and risk assessment of heavy metals in contaminated paddy fields—A case study in Xiangtan City, southern China. Ecotoxicology and environmental safety, 171, 281–289.

    Article  CAS  Google Scholar 

  • Dezfooli, D., Hosseini-Moghari, S. M., Ebrahimi, K., & Araghinejad, S. (2018). Classification of water quality status based on minimum quality parameters: Application of machine learning techniques. Modeling Earth Systems and Environment, 4(1), 311–324.

    Article  Google Scholar 

  • Doabi, S. A., Karami, M., Afyuni, M., & Yeganeh, M. (2018). Pollution and health risk assessment of heavy metals in agricultural soil, atmospheric dust and major food crops in Kermanshah province, Iran. Ecotoxicology and environmental safety, 163, 153-164.

  • Dogra, N., Sharma, M., Sharma, A., Keshavarzi, A., Minakshi, B., & R., … & Kumar, V. (2020). Pollution assessment and spatial distribution of roadside agricultural soils: A case study from India. International journal of environmental health research, 30(2), 146–159.

    Article  CAS  Google Scholar 

  • Dong, R., Jia, Z., & Li, S. (2018). Risk assessment and sources identification of soil heavy metals in a typical county of Chongqing Municipality, Southwest China. Process Safety and Environmental Protection, 113, 275–281.

    Article  CAS  Google Scholar 

  • Doyi, I., Essumang, D., Gbeddy, G., Dampare, S., Kumassah, E., & Saka, D. (2018). Spatial distribution, accumulation and human health risk assessment of heavy metals in soil and groundwater of the Tano Basin, Ghana. Ecotoxicology and environmental safety, 165, 540–546.

    Article  CAS  Google Scholar 

  • Duan, L., Cui, J., Jiang, Y., Zhao, C., & Anthony, E. J. (2017). Partitioning behavior of Arsenic in circulating fluidized bed boilers co-firing petroleum coke and coal. Fuel Processing Technology, 166, 107–114.

    Article  CAS  Google Scholar 

  • Eziz, M., Mohammad, A., Mamut, A., & Hini, G. (2018). A human health risk assessment of heavy metals in agricultural soils of Yanqi Basin, Silk Road Economic Belt, China. Human and Ecological Risk Assessment: An International Journal, 24(5), 1352–1366.

    Article  CAS  Google Scholar 

  • Ferreira-Baptista, L., & De Miguel, E. (2005). Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment. Atmospheric environment, 39(25), 4501–4512.

    Article  CAS  Google Scholar 

  • Ghanavati, N., Nazarpour, A., & Watts, M. J. (2019). Status, source, ecological and health risk assessment of toxic metals and polycyclic aromatic hydrocarbons (PAHs) in street dust of Abadan, Iran. Catena, 177, 246–259.

    Article  CAS  Google Scholar 

  • Giri, S., & Singh, A. K. (2017). Ecological and human health risk assessment of agricultural soils based on heavy metals in mining areas of Singhbhum copper belt, India. Human and Ecological Risk Assessment: An International Journal, 23(5), 1008–1027.

    Article  CAS  Google Scholar 

  • Guan, Q., Wang, F., Xu, C., Pan, N., Lin, J., Zhao, R., & Luo, H. (2018). Source apportionment of heavy metals in agricultural soil based on PMF: A case study in Hexi Corridor, northwest China. Chemosphere, 193, 189–197.

    Article  CAS  Google Scholar 

  • Haghnazar, H., Sangsefidi, Y., Mehraein, M., & Tavakol-Davani, H. (2020). Evaluation of infilling and replenishment of river sand mining pits. Environmental Earth Sciences, 79(14), 1–18.

    Article  Google Scholar 

  • Håkanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water research, 14(8), 975–1001.

    Google Scholar 

  • Harb, M. K., & Ebqa’ai, M., Al-rashidi, A., Alaziqi, B. H., Al Rashdi, M. S., & Ibrahim, B. (2015). Investigation of selected heavy metals in street and house dust from Al-Qunfudah, Kingdom of Saudi Arabia. Environmental earth sciences, 74(2), 1755–1763.

    Article  CAS  Google Scholar 

  • Hasan, M., Kausar, D., Akhter, G., & Shah, M. H. (2018). Evaluation of the mobility and pollution index of selected essential/toxic metals in paddy soil by sequential extraction method. Ecotoxicology and environmental safety, 147, 283–291.

    Article  CAS  Google Scholar 

  • Hou, Q., Yang, Z., Ji, J., Yu, T., Chen, G., Li, J., & Yuan, X. (2014). Annual net input fluxes of heavy metals of the agro-ecosystem in the Yangtze River delta, China. Journal of Geochemical Exploration, 139, 68–84.

    Article  CAS  Google Scholar 

  • Hu, B., Wang, J., Jin, B., Li, Y., & Shi, Z. (2017). Assessment of the potential health risks of heavy metals in soils in a coastal industrial region of the Yangtze River Delta. Environmental Science and Pollution Research, 24(24), 19816–19826.

    Article  CAS  Google Scholar 

  • Hu, W., Wang, H., Dong, L., Huang, B., Borggaard, O. K., Hansen, H. C. B., & Holm, P. E. (2018). Source identification of heavy metals in peri-urban agricultural soils of southeast China: An integrated approach. Environmental Pollution, 237, 650–661.

    Article  CAS  Google Scholar 

  • Huang, Y., Chen, Q., Deng, M., Japenga, J., Li, T., Yang, X., & He, Z. (2018). Heavy metal pollution and health risk assessment of agricultural soils in a typical peri-urban area in southeast China. Journal of environmental management, 207, 159–168.

    Article  CAS  Google Scholar 

  • Ihedioha, J. N., Ujam, O. T., Nwuche, C. O., Ekere, N. R., & Chime, C. C. (2016). Assessment of heavy metal contamination of rice grains (Oryza sativa) and soil from Ada field, Enugu, Nigeria: Estimating the human healtrisk. Human and Ecological Risk Assessment: An International Journal, 22(8), 1665–1677.

    Article  CAS  Google Scholar 

  • Iqbal, J., Tirmizi, S. A., & Shah, M. H. (2013). Statistical apportionment and risk assessment of selected metals in sediments from Rawal Lake (Pakistan). Environmental monitoring and assessment, 185(1), 729–743.

    Article  CAS  Google Scholar 

  • Islam, M. A., Romić, D., Akber, M. A., & Romić, M. (2018a). Trace metals accumulation in soil irrigated with polluted water and assessment of human health risk from vegetable consumption in Bangladesh. Environmental geochemistry and health40(1), 59–85.

  • Islam, M. M., Karim, M., Zheng, X., & Li, X. (2018b). Heavy metal and metalloid pollution of soil, water and foods in Bangladesh: A Critical Review. International journal of environmental research and public health15(12), 2825.

  • Jiang, H. H., Cai, L. M., Wen, H. H., Hu, G. C., Chen, L. G., & Luo, J. (2020). An integrated approach to quantifying ecological and human health risks from different sources of soil heavy metals. Science of The Total Environment, 701, 134466.

    Article  CAS  Google Scholar 

  • Jiang, Y., Chao, S., Liu, J., Yang, Y., Chen, Y., Zhang, A., & Cao, H. (2017). Source apportionment and health risk assessment of heavy metals in soil for a township in Jiangsu Province, China. Chemosphere, 168, 1658–1668.

    Article  CAS  Google Scholar 

  • Jing, F., Chen, X., Yang, Z., & Guo, B. (2018). Heavy metals status, transport mechanisms, sources, and factors affecting their mobility in Chinese agricultural soils. Environmental earth sciences, 77(3), 104.

    Article  Google Scholar 

  • Karimi, A., Naghizadeh, A., Biglari, H., Peirovi, R., Ghasemi, A., & Zarei, A. (2020). Assessment of human health risks and pollution index for heavy metals in farmlands irrigated by effluents of stabilization ponds. Environmental Science and Pollution Research, 1–11.

  • Ke, X., Gui, S., Huang, H., Zhang, H., Wang, C., & Guo, W. (2017). Ecological risk assessment and source identification for heavy metals in surface sediment from the Liaohe River protected area, China. Chemosphere, 175, 473–481.

    Article  CAS  Google Scholar 

  • Keshavarzi, A., & Kumar, V. (2019). Ecological risk assessment and source apportionment of heavy metal contamination in agricultural soils of Northeastern Iran. International journal of environmental health research, 29(5), 544–560.

    Article  CAS  Google Scholar 

  • Krastinytė, V., Baltrėnaitė, E., & Lietuvninkas, A. (2013). Analysis of snow-cap pollution for air quality assessment in the vicinity of an oil refinery. Environmental technology, 34(6), 757–763.

    Article  Google Scholar 

  • Kumar, V., Sharma, A., Kaur, P., Sidhu, G. P. S., Bali, A. S., Bhardwaj, R., & Cerda, A. (2019). Pollution assessment of heavy metals in soils of India and ecological risk assessment: A state-of-the-art. Chemosphere, 216, 449–462.

    Article  CAS  Google Scholar 

  • Li, H., & Ji, H. (2017). Chemical speciation, vertical profile and human health risk assessment of heavy metals in soils from coal-mine brownfield, Beijing, China. Journal of Geochemical Exploration, 183, 22–32.

    Article  CAS  Google Scholar 

  • Li, J., Cen, D., Huang, D., Li, X., Xu, J., Fu, S., & Zhang, J. (2014). Detection and analysis of 12 heavy metals in blood and hair sample from a general population of Pearl River Delta area. Cell biochemistry and biophysics, 70(3), 1663–1669.

    Article  CAS  Google Scholar 

  • Liang, Q., Xue, Z. J., Wang, F., Sun, Z. M., Yang, Z. X., & Liu, S. Q. (2015). Contamination and health risks from heavy metals in cultivated soil in Zhangjiakou City of Hebei Province, China. Environmental monitoring and assessment, 187(12), 754.

    Article  Google Scholar 

  • Liu, J., Zhang, X. H., Tran, H., Wang, D. Q., & Zhu, Y. N. (2011). Heavy metal contamination and risk assessment in water, paddy soil, and rice around an electroplating plant. Environmental Science and Pollution Research, 18(9), 1623.

    Article  CAS  Google Scholar 

  • Liu, L., Zhang, X., & Zhong, T. (2016). Pollution and health risk assessment of heavy metals in urban soil in China. Human and ecological risk assessment: An international journal, 22(2), 424–434.

    Article  CAS  Google Scholar 

  • Liu, M., Han, Z., & Yang, Y. (2019). Accumulation, temporal variation, source apportionment and risk assessment of heavy metals in agricultural soils from the middle reaches of Fenhe River basin, North China. RSC advances, 9(38), 21893–21902.

    Article  CAS  Google Scholar 

  • Ma, L., Sun, J., Yang, Z., & Wang, L. (2015). Heavy metal contamination of agricultural soils affected by mining activities around the Ganxi River in Chenzhou, Southern China. Environmental monitoring and assessment, 187(12), 731.

    Article  Google Scholar 

  • Mamat, A., Zhang, Z., Mamat, Z., Zhang, F., & Yinguang, C. (2020). Pollution assessment and health risk evaluation of eight (metalloid) heavy metals in farmland soil of 146 cities in China. Environmental Geochemistry and Health, 1–15.

  • Marcus, A. C., & Ekpete, O. A. (2014). Impact of discharged process wastewater from an oil refinery on the physicochemical quality of a receiving waterbody in Rivers State. Nigeria. IOSR Journal of Applied Chemistry, 7(12), 1–8.

    Article  Google Scholar 

  • Marrugo-Negrete, J., Pinedo-Hernández, J., & Díez, S. (2017). Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia. Environmental research, 154, 380-388.

  • Mehraein, M., Torabi, M., Sangsefidi, Y., & MacVicar, B. (2020). Numerical simulation of free flow through side orifice in a circular open-channel using response surface method. Flow Measurement and Instrumentation, 76, 101825.

  • Meng, Q., Zhang, J., Zhang, Z., & Wu, T. (2016). Geochemistry of dissolved trace elements and heavy metals in the Dan River Drainage (China): Distribution, sources, and water quality assessment. Environmental Science and Pollution Research, 23(8), 8091–8103.

    Article  CAS  Google Scholar 

  • Miao, X., Hao, Y., Zhang, F., Zou, S., Ye, S., & Xie, Z. (2020). Spatial distribution of heavy metals and their potential sources in the soil of Yellow River Delta: A traditional oil field in China. Environmental geochemistry and health, 42(1), 7–26.

    Article  CAS  Google Scholar 

  • Mirzaei, M., Marofi, S., Solgi, E., Abbasi, M., Karimi, R., & Bakhtyari, H. R. R. (2020). Ecological and health risks of soil and grape heavy metals in long-term fertilized vineyards (Chaharmahal and Bakhtiari province of Iran). Environmental Geochemistry and Health, 42(1), 27–43.

    Article  CAS  Google Scholar 

  • Mitra, P., Sharma, S., Purohit, P., & Sharma, P. (2017). Clinical and molecular aspects of lead toxicity: An update. Critical reviews in clinical laboratory sciences, 54(7–8), 506–528.

    Article  CAS  Google Scholar 

  • Mohammadi, A., Hajizadeh, Y., Taghipour, H., Mosleh Arani, A., Mokhtari, M., & Fallahzadeh, H. (2018). Assessment of metals in agricultural soil of surrounding areas of Urmia Lake, northwest Iran: A preliminary ecological risk assessment and source identification. Human and Ecological Risk Assessment: An International Journal, 24(8), 2070–2087.

    Article  CAS  Google Scholar 

  • Mokhtarzadeh, Z., Keshavarzi, B., Moore, F., Ajmone-Marsan, F., & Padoan, E. (2020). Potentially toxic elements in the Middle East oldest oil refinery zone soils: Source apportionment, speciation, bioaccessibility and human health risk assessment. Environmental Science and Pollution Research, 1–19.

  • Muller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. GeoJournal, 2, 108–118.

    Google Scholar 

  • Najmeddin, A., Keshavarzi, B., Moore, F., & Lahijanzadeh, A. (2018). Source apportionment and health risk assessment of potentially toxic elements in road dust from urban industrial areas of Ahvaz megacity, Iran. Environmental geochemistry and health, 40(4), 1187–1208.

    Article  CAS  Google Scholar 

  • Nguyen, B. T., Do, D. D., Nguyen, T. X., Nguyen, V. N., Nguyen, D. T. P., Nguyen, M. H., & Bach, Q. V. (2020). Seasonal, spatial variation, and pollution sources of heavy metals in the sediment of the Saigon River, Vietnam. Environmental Pollution, 256, 113412.

    Article  CAS  Google Scholar 

  • Nowak, B. (1996). Occurrence of heavy metals, sodium, calcium, and potassium in human hair, teeth, and nails. Biological trace element research, 52(1), 11–22.

    Article  CAS  Google Scholar 

  • Patel, P., Raju, N. J., Reddy, B. S. R., Suresh, U., Sankar, D. B., & Reddy, T. V. K. (2018). Heavy metal contamination in river water and sediments of the Swarnamukhi River Basin, India: Risk assessment and environmental implications. Environmental geochemistry and health, 40(2), 609–623.

    Article  CAS  Google Scholar 

  • Qing, X., Yutong, Z., & Shenggao, L. (2015). Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China. Ecotoxicology and environmental safety, 120, 377–385.

    Article  CAS  Google Scholar 

  • Rahimi, L., Amanipoor, H., & Battaleb-Looie, S. (2019). Effect of salinity of irrigation water on soil properties (abadan plain, SW Iran). Geocarto International, 1–20.

  • Sheng, J., Wang, X., Gong, P., Tian, L., & Yao, T. (2012). Heavy metals of the Tibetan top soils. Environmental Science and Pollution Research, 19(8), 3362–3370.

    Article  CAS  Google Scholar 

  • Song, H., Hu, K., An, Y., Chen, C., & Li, G. (2018). Spatial distribution and source apportionment of the heavy metals in the agricultural soil in a regional scale. Journal of soils and sediments, 18(3), 852–862.

    Article  CAS  Google Scholar 

  • Stafilov, T., Šajn, R., Pančevski, Z., Boev, B., Frontasyeva, M. V., & Strelkova, L. P. (2010). Heavy metal contamination of topsoils around a lead and zinc smelter in the Republic of Macedonia. Journal of Hazardous Materials, 175(1–3), 896–914.

    Article  CAS  Google Scholar 

  • Stevanović, V., Gulan, L., Milenković, B., Valjarević, A., Zeremski, T., & Penjišević, I. (2018). Environmental risk assessment of radioactivity and heavy metals in soil of Toplica region, South Serbia. Environmental geochemistry and health, 40(5), 2101–2118.

    Article  Google Scholar 

  • Sun, C., Liu, J., Wang, Y., Sun, L., & Yu, H. (2013). Multivariate and geostatistical analyses of the spatial distribution and sources of heavy metals in agricultural soil in Dehui, Northeast China. Chemosphere, 92(5), 517–523.

    Article  CAS  Google Scholar 

  • Sutherland, R. A. (2000). Bed sediment-associated trace metals in an urban stream, Oahu. Hawaii. Environmental geology, 39(6), 611–627.

    Article  CAS  Google Scholar 

  • Tepanosyan, G., Sahakyan, L., Belyaeva, O., Asmaryan, S., & Saghatelyan, A. (2018). Continuous impact of mining activities on soil heavy metals levels and human health. Science of The Total Environment, 639, 900–909.

    Article  CAS  Google Scholar 

  • Tian, K., Huang, B., Xing, Z., & Hu, W. (2017). Geochemical baseline establishment and ecological risk evaluation of heavy metals in greenhouse soils from Dongtai, China. Ecological Indicators, 72, 510–520.

    Article  CAS  Google Scholar 

  • Tian, S., Wang, S., Bai, X., Zhou, D., Luo, G., Yang, Y., & Lu, Q. (2020). Ecological security and health risk assessment of soil heavy metals on a village-level scale, based on different land use types. Environmental geochemistry and health, 42(10), 3393–3413.

  • Tomlinson, D. L., Wilson, J. G., Harris, C. R., & Jeffrey, D. W. (1980). Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer meeresuntersuchungen, 33(1), 566–575.

    Article  Google Scholar 

  • USEPA. (1989). Risk assessment guidance for superfund. Human health evaluation manual (part A vol. 1). Washington: US Environmental Protection Agency, Office of Emergency and Remedial Response.

  • USEPA. (2001). Supplemental guidance for developing soil screening levels for superfund sites. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response.

    Google Scholar 

  • USEPA. (2002). Supplemental guidance for developing soil screening levels for superfund sites. U.S. Environmental Protection Agency, Office of Emergency and Remedial Response.

    Google Scholar 

  • Ustaoğlu, F., & Islam, M. S. (2020). Potential toxic elements in sediment of some rivers at Giresun, Northeast Turkey: A preliminary assessment for ecotoxicological status and health risk. Ecological Indicators, 113, 106237.

    Article  Google Scholar 

  • Vu, C. T., Lin, C., Shern, C. C., Yeh, G., & Tran, H. T. (2017). Contamination, ecological risk and source apportionment of heavy metals in sediments and water of a contaminated river in Taiwan. Ecological Indicators, 82, 32–42.

    Article  CAS  Google Scholar 

  • Wang, L., Wang, Y., Xu, C., An, Z., & Wang, S. (2011). Analysis and evaluation of the source of heavy metals in water of the River Changjiang. Environmental monitoring and assessment, 173(1–4), 301–313.

    Article  CAS  Google Scholar 

  • Wang, P., Li, Z., Liu, J., Bi, X., Ning, Y., Yang, S., & Yang, X. (2019). Apportionment of sources of heavy metals to agricultural soils using isotope fingerprints and multivariate statistical analyses. Environmental pollution, 249, 208–216.

    Article  CAS  Google Scholar 

  • Wang, Y., Duan, X., & Wang, L. (2020). Spatial distribution and source analysis of heavy metals in soils influenced by industrial enterprise distribution: Case study in Jiangsu Province. Science of The Total Environment, 710, 134953.

    Article  CAS  Google Scholar 

  • Wang, Y., Wang, P., Bai, Y., Tian, Z., Li, J., Shao, X., & Li, B. L. (2013). Assessment of surface water quality via multivariate statistical techniques: a case study of the Songhua River Harbin region, China. Journal of Hydro-Environment Research, 7(1), 30–40.

    Article  Google Scholar 

  • Wang, Z., Hong, C., Xing, Y., Wang, K., Li, Y., Feng, L., & Ma, S. (2018). Spatial distribution and sources of heavy metals in natural pasture soil around copper-molybdenum mine in Northeast China. Ecotoxicology and environmental safety, 154, 329–336.

    Article  CAS  Google Scholar 

  • Wu, H., Yang, F., Li, H., Li, Q., Zhang, F., Ba, Y., & Zhu, J. (2020). Heavy metal pollution and health risk assessment of agricultural soil near a smelter in an industrial city in China. International journal of environmental health research, 30(2), 174–186.

    Article  CAS  Google Scholar 

  • Wu, W., Wu, P., Yang, F., Sun, D. L., Zhang, D. X., & Zhou, Y. K. (2018). Assessment of heavy metal pollution and human health risks in urban soils around an electronics manufacturing facility. Science of the Total Environment, 630, 53–61.

    Article  CAS  Google Scholar 

  • Xiao, J., Wang, L., Deng, L., & Jin, Z. (2019a). Characteristics, sources, water quality and health risk assessment of trace elements in river water and well water in the Chinese Loess Plateau. Science of the Total Environment650, 2004–2012.

  • Xiao, R., Guo, D., Ali, A., Mi, S., Liu, T., Ren, C., & Zhang, Z. (2019b). Accumulation, ecological-health risks assessment, and source apportionment of heavy metals in paddy soils: A case study in Hanzhong, Shaanxi, China. Environmental Pollution248, 349–357.

  • Xue, J. L., Zhi, Y. Y., Yang, L. P., Shi, J. C., Zeng, L. Z., & Wu, L. S. (2014). Positive matrix factorization as source apportionment of soil lead and cadmium around a battery plant (Changxing County, China). Environmental Science and Pollution Research, 21(12), 7698–7707.

    Article  CAS  Google Scholar 

  • Yang, Z., Jing, F., Chen, X., Liu, W., Guo, B., Lin, G., & Liu, W. (2018). Spatial distribution and sources of seven available heavy metals in the paddy soil of red region in Hunan Province of China. Environmental monitoring and assessment, 190(10), 611.

    Article  Google Scholar 

  • Zhang, P., Qin, C., Hong, X., Kang, G., Qin, M., Yang, D., & Dick, R. P. (2018a). Risk assessment and source analysis of soil heavy metal pollution from lower reaches of Yellow River irrigation in China. Science of the Total Environment, 633, 1136–1147.

    Article  CAS  Google Scholar 

  • Zhang, R., Chen, T., Zhang, Y., Hou, Y., & Chang, Q. (2020). Health risk assessment of heavy metals in agricultural soils and identification of main influencing factors in a typical industrial park in northwest China. Chemosphere, 252, 126591.

  • Zhang, X., Yang, L., Li, Y., Li, H., Wang, W., & Ye, B. (2012). Impacts of lead/zinc mining and smelting on the environment and human health in China. Environmental monitoring and assessment, 184(4), 2261–2273.

    Article  CAS  Google Scholar 

  • Zhang, Z., Lu, Y., Li, H., Tu, Y., Liu, B., & Yang, Z. (2018b). Assessment of heavy metal contamination, distribution and source identification in the sediments from the Zijiang River, China. Science of the Total Environment, 645, 235–243.

    Article  CAS  Google Scholar 

  • Zhao, K., Zhang, L., Dong, J., Wu, J., Ye, Z., Zhao, W., & Fu, W. (2020). Risk assessment, spatial patterns and source apportionment of soil heavy metals in a typical Chinese hickory plantation region of southeastern China. Geoderma, 360, 114011.

    Article  Google Scholar 

  • Zhaoyong, Z., Mamat, A., & Simayi, Z. (2019). Pollution assessment and health risks evaluation of (metalloid) heavy metals in urban street dust of 58 cities in China. Environmental Science and Pollution Research, 26(1), 126–140.

    Article  Google Scholar 

Download references

Funding

The project has been supported and funded by Abadan University of Medical Science with project no. 99U859.

Author information

Authors and Affiliations

Authors

Contributions

Hamed Haghnazar: Conceptualization, Methodology, Analysis and investigation, Writing manuscript.

Mojtaba Pourakbar: Analysis and investigation, Writing manuscript.

Mostafa Mahdavianpour: Sampling, Analysis and investigation, Writing manuscript.

Ehsan Aghayani: Conceptualization, Methodology, Funding acquisition, analysis and investigation, Writing manuscript.

Corresponding author

Correspondence to Ehsan Aghayani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (RAR 25 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haghnazar, H., Pourakbar, M., Mahdavianpour, M. et al. Spatial distribution and risk assessment of agricultural soil pollution by hazardous elements in a transboundary river basin. Environ Monit Assess 193, 158 (2021). https://doi.org/10.1007/s10661-021-08942-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-08942-1

Keywords

Navigation