Skip to main content

Advertisement

Log in

Selecting environmental factors to predict spatial distribution of soil organic carbon stocks, northwestern Iran

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Knowledge of environmental factors controlling soil organic carbon (SOC) stocks can help predict spatial distribution SOC stocks. So, this study was carried out to select the best environmental factors to model and estimate the spatial distribution of SOC stocks in northwestern Iran. Soil sampling was performed at 210 points by multiple conditioned Latin Hypercube method (cLHm) and SOC stocks were measured. Also, environmental factors, including terrain attributes, moisture index, and normalized difference vegetation index (NDVI), were calculated. SOC stocks were modeled using random forest (RF) and partial least squares regression (PLSR) models. Modeling SOC stocks by RF model showed that the efficient factors for estimating the SOC stocks were slope height (slph), terrain surface texture (texture), standardized height (standh), elevation, relative slope position (rsp), and normalized height (normalh). Also, the PLSR model selected standardized height (standh), relative slope position (rsp), slope, and channel network base level (chnl base) to model SOC stocks. In both RF and PLSR methods, the standh and rsp factors were suitable parameters for estimating the SOC stocks. Predicting the spatial distribution of SOC stocks using environmental factors showed that the R2 values for RF and PLSR models were 0.81 and 0.40, respectively. The result of this study showed that in areas with complex land features, terrain attributes can be good predictors for estimating SOC stocks. These predictors allow more accurate estimates of SOC stocks and contribute considerably to the effective application of land management strategies in arid and semiarid area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request. Supplementary data associated with this article can be found, in the online version, at https://earthexplorer.usgs.gov/ and https://giovanni.gsfc.nasa.gov/giovanni/.

References

  • Bargaoui, Y. E., Walter, C., Michot, D., Saby, N. P., Vincent, S., & Lemercier, B. (2019). Validation of digital maps derived from spatial disaggregation of legacy soil maps. Geoderma, 356, 113907.

  • Behrens, T., MacMillan, R. A., Rossel, R. A. V., Schmidt, K., & Lee, J. (2019). Teleconnections in spatial modelling. Geoderma, 354, 113854.

  • Bonfatti, B. R., Hartemink, A. E., Giasson, E., Tornquist, C. G., & Adhikari, K. (2016). Digital mapping of soil carbon in a viticultural region of Southern Brazil. Geoderma, 261, 204–221.

    Article  CAS  Google Scholar 

  • Chakan, A. A., Taghizadeh-Mehrjardi, R., Kerry, R., Kumar, S., Khordehbin, S., & Khanghah, S. Y. (2017). Spatial 3D distribution of soil organic carbon under different land use types. Environmental Monitoring and Assessment, 189(3), 131.

    Article  Google Scholar 

  • Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V., & Böhner, J. (2015). System for automated geoscientific analyses (SAGA) v. 2.1. 4. Geoscientific Model Development, 8(7), 1991–2007.

  • Deng, L., Sweeney, S., & Shangguan, Z. (2014). Long‐T erm Effects of Natural Enclosure: Carbon Stocks, Sequestration Rates and Potential for Grassland Ecosystems in the Loess Plateau. CLEAN–Soil Air Water, 42(5), 617–625.

  • Dong, Z., Wang, N., Liu, J., Xie, J., & Han, J. (2021). Combination of machine learning and VIRS for predicting soil organic matter. Journal of Soils and Sediments, 21(7), 2578–2588. https://doi.org/10.1007/s11368-021-02977-0

    Article  Google Scholar 

  • Ellert, B. H., Janzen, H. H., & Entz, T. (2002). Assessment of a method to measure temporal change in soil carbon storage. Soil Science Society of America Journal, 66(5), 1687–1695.

    Article  CAS  Google Scholar 

  • Gao, L., Shao, M., Peng, X., & She, D. (2015). Spatio-temporal variability and temporal stability of water contents distributed within soil profiles at a hillslope scale. CATENA, 132, 29–36.

    Article  Google Scholar 

  • Gomes, L. C., Faria, R. M., de Souza, E., Veloso, G. V., Schaefer, C. E. G., & Fernandes Filho, E. I. (2019). Modelling and mapping soil organic carbon stocks in Brazil. Geoderma, 340, 337–350.

    Article  CAS  Google Scholar 

  • Guo, Z., Adhikari, K., Chellasamy, M., Greve, M. B., Owens, P. R., & Greve, M. H. (2019). Selection of terrain attributes and its scale dependency on soil organic carbon prediction. Geoderma, 340, 303–312.

    Article  CAS  Google Scholar 

  • Gurung, R. B., Ogle, S. M., Breidt, F. J., Williams, S. A., & Parton, W. J. (2020). Bayesian calibration of the DayCent ecosystem model to simulate soil organic carbon dynamics and reduce model uncertainty. Geoderma, 376, 114529.

  • Harman, H. H. (1976). Modern factor analysis. University of Chicago press.

  • Hengl, T., Heuvelink, G. B., Kempen, B., Leenaars, J. G., Walsh, M. G., Shepherd, K. D., Sila, A., MacMillan, R.A., de Jesus, J. M., Tamene, L. & Tondoh, J. E. (2015). Mapping soil properties of Africa at 250 m resolution: Random forests significantly improve current predictions. PloS One, 10(6), e0125814.

  • Hooper, D. U., Bigneil, D. E., Brown, V. К, & Brassaard, L. (2000). Interactions between aboveground and belowground biodiversity in terrestrial. BioScience, 50(12), 12.

    Article  Google Scholar 

  • Hounkpatin, O. K., de Hipt, F. O., Bossa, A. Y., Welp, G., & Amelung, W. (2018). Soil organic carbon stocks and their determining factors in the Dano catchment (Southwest Burkina Faso). CATENA, 166, 298–309.

    Article  CAS  Google Scholar 

  • Hu, P. L., Liu, S. J., Ye, Y. Y., Zhang, W., Wang, K. L., & Su, Y. R. (2018). Effects of environmental factors on soil organic carbon under natural or managed vegetation restoration. Land Degradation & Development, 29(3), 387–397.

    Article  Google Scholar 

  • Huang, J., Minasny, B., McBratney, A. B., Padarian, J., & Triantafilis, J. (2018). The location-and scale-specific correlation between temperature and soil carbon sequestration across the globe. Science of the Total Environment, 615, 540–548.

    Article  CAS  Google Scholar 

  • Iranian soil and water institute. (1991). Iranian soil map (1:1000.000). http://www.swri.ir/

  • Iwahashi, J., & Pike, R. J. (2007). Automated classifications of topography from DEMs by an unsupervised nested-means algorithm and a three-part geometric signature. Geomorphology, 86(3–4), 409–440.

    Article  Google Scholar 

  • Jensen, J. R. (2005). Introductory digital image processing: A remote sensing perspective (3rd ed.). Prentice-Hall Inc.

    Google Scholar 

  • Jiménez, J. G., Healy, M. G., & Daly, K. (2019). Effects of fertiliser on phosphorus pools in soils with contrasting organic matter content: A fractionation and path analysis study. Geoderma, 338, 128–135.

    Article  Google Scholar 

  • Keskin, H., Grunwald, S., & Harris, W. G. (2019). Digital mapping of soil carbon fractions with machine learning. Geoderma, 339, 40–58.

    Article  CAS  Google Scholar 

  • Klute, A., & Page, A.L. (1986). Methods of soil analysis. Part 1. Physical and mineralogical methods; Part 2. Chemical and microbiological properties. American Society of Agronomy, Inc.

  • Kuhn, M., & Johnson, K. (2013). Applied predictive modeling (Vol. 26). Springer.

    Book  Google Scholar 

  • Ließ, M. (2020). At the interface between domain knowledge and statistical sampling theory: Conditional distribution based sampling for environmental survey (CODIBAS). Catena, 187, 104423.

  • Maerker, M., Hochschild, V., Maca, V., & Vilimek, V. (2016). Stochastic assessment of landslides and debris flows in the Jemma basin, Blue Nile, Central Ethiopia. Geografia Fisica e Dinamica Quaternaria, 39, 51–58.

    Google Scholar 

  • Maia, S. M., Ogle, S. M., Cerri, C. C., & Cerri, C. E. (2010). Changes in soil organic carbon storage under different agricultural management systems in the Southwest Amazon Region of Brazil. Soil and Tillage Research, 106(2), 177–184.

    Article  Google Scholar 

  • McBratney, A. B., Santos, M. M., & Minasny, B. (2003). On digital soil mapping. Geoderma, 117(1–2), 3–52.

    Article  Google Scholar 

  • Minasny, B., & McBratney, A. B. (2006). A conditioned Latin hypercube method for sampling in the presence of ancillary information. Computers & Geosciences, 32(9), 1378–1388.

    Article  Google Scholar 

  • Minasny, B., McBratney, A. B., Malone, B. P., & Wheeler, I. (2013). Digital mapping of soil carbon. In Advances in Agronomy (vol. 118, pp. 1–47). Elsevier

  • Minasny, B., Setiawan, B. I., Saptomo, S. K., & McBratney, A. B. (2018). Open digital mapping as a cost-effective method for mapping peat thickness and assessing the carbon stock of tropical peatlands. Geoderma, 313, 25–40.

    Article  Google Scholar 

  • Mohajane, M., Essahlaoui, A., Oudija, F., Hafyani, M. E., Hmaidi, A. E., Ouali, A. E., Randazzo, G., & Teodoro, A. C. (2018). Land use/land cover (LULC) using landsat data series (MSS, TM, ETM+ and OLI) in Azrou Forest in the Central Middle Atlas of Morocco. Environments, 5(12), 131.

    Article  Google Scholar 

  • Nelson, D. W., & Sommers, L. (1982). Total carbon, organic carbon, and organic matter. Methods of soil analysis: Part 2 chemical and microbiological properties, 9, 539–579.

  • Norris, D., Brown, D., Moela, A. K., Selolo, T. C., Mabelebele, M., Ngambi, J. W., & Tyasi, T. L. (2015). Path coefficient and path analysis of body weight and biometric traits in indigenous goats. Indian Journal of Animal Research, 49(5), 573–578.

    Google Scholar 

  • Ottoy, S., De Vos, B., Sindayihebura, A., Hermy, M., & Van Orshoven, J. (2017). Assessing soil organic carbon stocks under current and potential forest cover using digital soil mapping and spatial generalisation. Ecological Indicators, 77, 139–150.

    Article  CAS  Google Scholar 

  • Prichard, S. J., Peterson, D. L., & Hammer, R. D. (2000). Carbon distribution in subalpine forests and meadows of the Olympic Mountains, Washington. Soil Science Society of America Journal, 64(5), 1834–1845.

    Article  CAS  Google Scholar 

  • Prietzel, J., Zimmermann, L., Schubert, A., & Christophel, D. (2016). Organic matter losses in German Alps forest soils since the 1970s most likely caused by warming. Nature Geoscience, 9(7), 543–548.

    Article  CAS  Google Scholar 

  • Qin, Y., Feng, Q., Holden, N. M., & Cao, J. (2016). Variation in soil organic carbon by slope aspect in the middle of the Qilian Mountains in the upper Heihe River Basin, China. CATENA, 147, 308–314.

    Article  CAS  Google Scholar 

  • Quinn, P. F. B. J., Beven, K., Chevallier, P., & Planchon, O. (1991). The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models. Hydrological Processes, 5(1), 59–79.

    Article  Google Scholar 

  • Rabbi, S. M. F., Tighe, M., Delgado-Baquerizo, M., Cowie, A., Robertson, F., Dalal, R., Page, K., Crawford, D., Wilson, B. R., Schwenke, G., McLeod, M., Badgery, W., Dang, Y. P., Bell, M., O’Leary, G., Liu, D. L., & Baldock, J. (2015). Climate and soil properties limit the positive effects of land use reversion on carbon storage in Eastern Australia. Scientific Reports, 5(1), 17866. https://doi.org/10.1038/srep17866

    Article  CAS  Google Scholar 

  • Rahmati, M., Neyshabouri, M. R., Oskouei, M. M., Fard, A. F., & Ahmadi, A. (2016). Soil organic carbon prediction using remotely sensed data at Lighvan watershed, northwest of Iran. Azarian Journal of Agriculture, 3(2), 45–49.

    Google Scholar 

  • RColorBrewer, S., & Liaw, M. A. (2018). Package ‘randomForest.’ University of California.

    Google Scholar 

  • Rhoton, F., Emmerich, W., Goodrich, D., Miller, S., & McChesney, D. (2006). Soil geomorphological characteristics of a semiarid watershed. Soil Science Society of America Journal, 70(5), 1532–1540.

    Article  CAS  Google Scholar 

  • Roose, E. J., Lal, R., Feller, C., & Barthes, B. (2005). Soil erosion and carbon dynamics. CRC Press.

    Book  Google Scholar 

  • Sabetizade, M., Gorji, M., Roudier, P., Zolfaghari, A. A., & Keshavarzi, A. (2021). Combination of MIR spectroscopy and environmental covariates to predict soil organic carbon in a semi-arid region. Catena196, 104844.

  • Sanderman, J., Hengl, T., & Fiske, G. J. (2017). Soil carbon debt of 12,000 years of human land use. Proceedings of the National Academy of Sciences, 114(36), 9575–9580.

    Article  CAS  Google Scholar 

  • Schillaci, C., Acutis, M., Lombardo, L., Lipani, A., Fantappie, M., Märker, M., & Saia, S. (2017). Spatio-temporal topsoil organic carbon mapping of a semi-arid Mediterranean region: The role of land use, soil texture, topographic indices and the influence of remote sensing data to modelling. Science of the Total Environment, 601, 821–832.

    Article  Google Scholar 

  • Schumacher, B. A. (2002). Methods for the determination of total organic carbon (TOC) in soils and sediments. United States Environmental Protection Agency.

  • Shahini Shamsabadi, M., Esfandiarpour-Borujeni, I., Shirani, H., & Salehi, M. H. (2019). Application of soil properties, auxiliary parameters, and their combination for prediction of soil classes using decision tree model. Desert, 24(1), 153–169.

    Google Scholar 

  • Söderström, B., Hedlund, K., Jackson, L. E., Kätterer, T., Lugato, E., Thomsen, I. K., & Jørgensen, H. B. (2014). What are the effects of agricultural management on soil organic carbon (SOC) stocks? Environmental Evidence, 3(1), 1–8. https://doi.org/10.1186/2047-2382-3-2

    Article  Google Scholar 

  • Tian, G., Granato, T. C., Cox, A. E., Pietz, R. I., Carlson, C. R., Jr., & Abedin, Z. (2009). Soil carbon sequestration resulting from long-term application of biosolids for land reclamation. Journal of Environmental Quality, 38(1), 61–74.

    Article  CAS  Google Scholar 

  • Venter, Z. S., Hawkins, H. J., Cramer, M. D., & Mills, A. J. (2021). Mapping soil organic carbon stocks and trends with satellite-driven high resolution maps over South Africa. Science of The Total Environment771, 145384.

  • Wang, B., Waters, C., Orgill, S., Gray, J., Cowie, A., Clark, A., & Li Liu, D. (2018). High resolution mapping of soil organic carbon stocks using remote sensing variables in the semi-arid rangelands of eastern Australia. Science of the Total Environment, 630, 367–378.

    Article  CAS  Google Scholar 

  • Wang, S., Fan, J., Zhong, H., Li, Y., Zhu, H., Qiao, Y., & Zhang, H. (2019). A multi-factor weighted regression approach for estimating the spatial distribution of soil organic carbon in grasslands. CATENA, 174, 248–258.

    Article  CAS  Google Scholar 

  • Wang, Z., Govers, G., Steegen, A., Clymans, W., Van den Putte, A., Langhans, C., Merckx, R., & Van Oost, K. (2010). Catchment-scale carbon redistribution and delivery by water erosion in an intensively cultivated area. Geomorphology, 124(1–2), 65–74.

    Article  Google Scholar 

  • Yang, R. M., Zhang, G. L., Liu, F., Lu, Y. Y., Yang, F., Yang, F., Yang, M., Zhao, Y. G., & Li, D. C. (2016). Comparison of boosted regression tree and random forest models for mapping topsoil organic carbon concentration in an alpine ecosystem. Ecological Indicators, 60, 870–878.

    Article  CAS  Google Scholar 

  • Zhao, M., Yue, T., Zhao, N., Sun, X., & Zhang, X. (2014). Combining LPJ-GUESS and HASM to simulate the spatial distribution of forest vegetation carbon stock in China. Journal of Geographical Sciences, 24(2), 249–268.

    Article  Google Scholar 

  • Zhao, N., & Li, X. G. (2017). Effects of aspect–vegetation complex on soil nitrogen mineralization and microbial activity on the Tibetan Plateau. CATENA, 155, 1–9.

    Article  CAS  Google Scholar 

  • Zhu, M., Feng, Q., Qin, Y., Cao, J., Zhang, M., Liu, W., Deo, R. C., Zhang, C., Li, R., & Li, B. (2019). The role of topography in shaping the spatial patterns of soil organic carbon. CATENA, 176, 296–305.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kamal Khosravi Aqdam or Nafiseh Yaghmaeian Mahabadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khosravi Aqdam, K., Yaghmaeian Mahabadi, N., Ramezanpour, H. et al. Selecting environmental factors to predict spatial distribution of soil organic carbon stocks, northwestern Iran. Environ Monit Assess 193, 713 (2021). https://doi.org/10.1007/s10661-021-09502-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09502-3

Keywords

Navigation