Skip to main content
Log in

Lubrication Models with Small to Large Slip Lengths

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

A set of lubrication models for the thin film flow of incompressible fluids on solid substrates is derived and studied. The models are obtained as asymptotic limits of the Navier-Stokes equations with the Navier-slip boundary condition for different orders of magnitude for the slip-length parameter. Specifically, the influence of slip on the dewetting behavior of fluids on hydrophobic substrates is investigated here. Matched asymptotics are used to describe the dynamic profiles for dewetting films and comparison is given with computational simulations. The motion of the dewetting front shows transitions from being nearly linear in time for no-slip to t 2/3 as the slip is increased. For much larger slip lengths the front motion appears to become linear again. Correspondingly, the dewetting profiles undergo a transition from oscillatory to monotone decay into the uniform film layer for large slip. Increasing the slip further, to very large values, is associated with an increasing degree of asymmetry in the structure of the dewetting ridge profile

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oron A., Davis S.H., and Bankoff S.G. (1997). Long-scale evolution of thin liquid films. Rev. Mod. Phys 69:931–980

    Article  ADS  Google Scholar 

  2. Bertozzi A.L., and Brenner M.P. (1997). Linear stability and transient growth in driven contact lines. Phys. Fluids 9: 530–539

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Kataoka D.E., and Troian S.M. (1997). A theoretical study of instabilities at the advancing front of thermally driven coating films. J. Coll. Interf. Sci 192:350–362

    Article  Google Scholar 

  4. López P.G., Bankoff S.G., and Miksis M.J. (1996). Non-isothermal spreading of a thin liquid film on an inclined plane. J. Fluid Mech 11:1–39

    MATH  Google Scholar 

  5. A. Münch and Wagner B.A. (1999). Numerical and asymptotic results on the linear stability of a thin film spreading down a slope of small inclination. Eur. J. Appl. Math 10:297–318

    Article  Google Scholar 

  6. Barrat J.L., and Bocquet L. (1999). Large slip effect at a nonwetting fluid-solid interface. Phys. Rev. Lett 82:4671–4674

    Article  ADS  Google Scholar 

  7. Brochard-Wyart F., P.-G. de Gennes, Hervert H., and Redon C. (1994). Wetting and slippage of polymer melts on semi-ideal surfaces. Langmuir 10:1566–1572

    Article  Google Scholar 

  8. Priezjev N.V., and Troian S.M. (2004). Molecular origin and dynamic behavior of slip in sheared polymer films. Phys. Rev. Lett 92:018302

    Article  PubMed  ADS  Google Scholar 

  9. Sharma A., and Mittal J. (2002). Instability of thin liquid films by density variations: a new mechanism that mimics spinodal dewetting. Phys. Rev. Lett 89:186101

    Article  PubMed  ADS  Google Scholar 

  10. Shenoy V., and Sharma A. (2002). Dewetting of glassy polymer films. Phys. Rev. Lett 88:236101

    Article  PubMed  ADS  Google Scholar 

  11. Lauga E., Brenner M., and Stone H., Microfluidics: The no-slip boundary condition. Handbook of Experimental Fluid Dynamics, Springer. Preprint available at: http://arxiv.org/pdf/cond-mat/0501557 (2005), (to appear).

  12. Fetzer R., Jacobs K., Münch A., Wagner B., and Witelski T. (2005). New slip regimes and the shape of dewetting thin films. Phys. Rev. Lett 95:127801

    Article  PubMed  ADS  Google Scholar 

  13. Troian S.M., Herbolzheimer E., Safran S.A., and Joanny J.F. (1989). Fingering instabilities of driven spreading films. Europhys. Lett 10:25–30

    Article  ADS  Google Scholar 

  14. Kargupta K., Sharma A., and Khanna R. (2004) . Instability, dynamics and morphology of thin slipping films. Langmuir 20:244–253

    Google Scholar 

  15. Brenner M.P., and Gueyffier D. (1999). On the bursting of viscous films. Phys. Fluids 11 :737–739

    Article  ADS  Google Scholar 

  16. Erneux T., and Davis S.H. (1993). Nonlinear rupture of free films. Phys. Fluids 5 :1117

    Article  MATH  ADS  Google Scholar 

  17. Sünderhauf G., Raszillier H., and Durst F. (2002). The retraction of the edge of a planar liquid sheet. Phys. Fluids 14 : 198–208

    Article  ADS  MathSciNet  Google Scholar 

  18. Eggers J. (1997). Nonlinear dynamics and breakup of free-surface flows. Rev. Mod. Phys 69 :865–929

    Article  ADS  Google Scholar 

  19. Flitton J.C., and King J.R. (2004). Surface-tension-driven dewetting of Newtonian and power-law fluids. J. Engng. Math 50 :241–266

    Article  MATH  MathSciNet  Google Scholar 

  20. King J.R., and Bowen M. (2001). Moving boundary problems and non-uniqueness for the thin film equation. Eur. J. Appl. Math 12 :321–356

    Article  MATH  MathSciNet  Google Scholar 

  21. Münch A. (2005). Dewetting rates of thin liquid films. J. Phys. Condensed Matter 17:S309–S318

    Article  Google Scholar 

  22. Witelski T.P., and Bernoff A.J. (2000). Dynamics of three-dimensional thin film rupture. Physica D 147 :155–176

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. Williams M.B., and Davis S.H. (1982). Nonlinear theory of film rupture. J. Coll. Interf. Sci 90 :220–228

    Article  Google Scholar 

  24. Zhang W.W., and Lister J.R. (1999). Similarity solutions for van der waals rupture of a thin film on a solid substrate. Phys. Fluids 11 :2454–2462

    Article  ADS  MathSciNet  Google Scholar 

  25. Münch A., Wagner B., Contact-line instability of dewetting thin films. Physica D (2005) accepted.

  26. Neto C., Jacobs K., Seemann R., Blossey R., Becker J., and Grün G. (2003). Satellite hole formation during dewetting: experiment and simulation. J. Phys. Condensed Matter 15 :3355–3366

    Article  ADS  Google Scholar 

  27. Glasner K., and Witelski T. (2003). Coarsening dynamics of dewetting films. Phys. Rev. E 67 :016302

    Article  ADS  Google Scholar 

  28. Seemann R., Herminghaus S., and Jacobs K. (2001). Dewetting patterns and molecular forces: a reconciliation. Phys. Rev. Lett 86:5534–5537

    Article  PubMed  ADS  Google Scholar 

  29. Seemann R., Herminghaus S., and Jacobs K. (2001). Gaining control of pattern formation of dewetting films. J. Phys. Condensed Matter 13:4925–4938

    Article  ADS  Google Scholar 

  30. Reiter G., and Khanna R. (2000). Kinetics of autophobic dewetting of polymer films. Langmuir 16 :6351–6357

    Article  Google Scholar 

  31. Redon C., Brzoska J.B., and Brochard-Wyart F. (1994). Dewetting and slippage of microscopic polymer films. macromolecules 27:468–471

    Google Scholar 

  32. F. Brochard-Wyart, Debregeas G., Fondecave R., and Martin P. (1997). Dewetting of supported viscoelastic polymer films: birth of rims. Macromolecules 30:1211–1213

    Article  Google Scholar 

  33. Ghatak A., Khanna R., and Sharma A. (1999). Dynamics and morphology of holes in dewetting of thin films. J. Coll. Interf. Sci 212:483–494

    Article  Google Scholar 

  34. Seemann R., Herminghaus S., and Jacobs K. (2001). Shape of a liquid front upon dewetting. Phys. Rev. Lett 87:196101

    Article  PubMed  ADS  Google Scholar 

  35. Reiter G. (2001). Dewetting of highly elastic thin polymer films. Phys. Rev. Lett 87:186101

    Article  ADS  Google Scholar 

  36. Münch A. Fingering instability in dewetting films induced by slippage. Matheon preprint number 123 (2004)

  37. Herminghaus S., Seemann R., and Jacobs K. (2002). Generic morphologies of viscoelastic dewetting fronts. Phys. Rev. Lett 89 :56101

    Article  ADS  Google Scholar 

  38. Saulnier F., Raphaël E. and de Gennes P.G. (2002). Dewetting of thin film polymers. Phys. Rev. E. 66 :061607

    Article  ADS  Google Scholar 

  39. King J.R., Münch A. and Wagner B., Stability of a ridge. Nonlinearity (2005) submitted

  40. Boatto S., Kadanoff L.P., and Olla P. (1993). Traveling-wave solutions to thin-film equations. Phys. Rev. E 48 :4423–4431

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Münch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Münch, A., Wagner, B.A. & Witelski, T.P. Lubrication Models with Small to Large Slip Lengths. J Eng Math 53, 359–383 (2005). https://doi.org/10.1007/s10665-005-9020-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-005-9020-3

Keywords

Navigation