Skip to main content
Log in

Combined thermal and electrohydrodynamic patterning of thin liquid films

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

Both electric fields and temperature gradients can destabilize the surface of a thin liquid film and lead to the self-assembly of patterns composed of pillar-like structures. Such instabilities offer a relatively simple way to tailor the surface topography of coatings, which in turn can be used to influence coating appearance, texture, and functionality. The present work explores how the simultaneous application of an electric field and temperature gradient can be used to further influence thin-liquid-film instabilities. Both perfect and leaky dielectric materials are considered, and lubrication theory is applied to develop a system of nonlinear partial differential equations for the interfacial height and charge. Linear stability analysis of the lubrication equations shows that in perfect dielectric films, thermal effects tend to dominate the process, often rendering the electric field unimportant. However, in leaky dielectric films, both the thermal and electric fields play important roles and together can produce an increase in the growth rate and a reduction in the dominant wavelength of the instability. Nonlinear simulations of the lubrication equations show that the predictions of the linear theory hold even when the interfacial perturbations are no longer small. The effects of viscoelasticity are considered within the linear theory, and it is found that the growth rate of the instability, but not the length scale, depends on the rheological parameters. The findings of this work suggest that the simultaneous use of an electric field and temperature gradient will allow thin films to be patterned at length scales not accessible when only one of these destabilizing forces is used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Assender H, Bliznyuk V, Porfyrakis K (2002) How surface topography relates to materials’ properties. Science 297:973–976

    Article  ADS  Google Scholar 

  2. Melcher JR, Smith CV (1969) Electrohydrodynamic charge relaxation and interfacial perpendicular-field instability. Phys Fluids 12:778–790

    Article  ADS  Google Scholar 

  3. Harris DJ, Hu H, Conrad JC, Lewis JA (2007) Patterning colloidal films via evaporative lithography. Phys Rev Lett 98:148301

    Article  ADS  Google Scholar 

  4. Davis SH (1987) Thermocapillary instabilities. Annu Rev Fluid Mech 19:403–435

    Article  MATH  ADS  Google Scholar 

  5. Oron A, Davis SH, Bankoff SG (1997) Long-scale evolution of thin liquid films. Rev Mod Phys 69:931–980

    Article  ADS  Google Scholar 

  6. Chou SY, Zhuang L, Guo L (1999) Lithographically induced self-construction of polymer microstructures for resistless patterning. Appl Phys Lett 75:1004–1006

    Article  ADS  Google Scholar 

  7. Chou SY, Zhuang L (1999) Lithographically induced self-assembly of periodic polymer micropillar arrays. J Vac Sci Technol B 17:3197–3202

    Google Scholar 

  8. Schaffer E, Thurn-Albrecht T, Russell TP, Steiner U (2000) Electrically induced structure formation and pattern transfer. Nature 403:874–877

    Article  ADS  Google Scholar 

  9. Wu N, Russel WB (2009) Micro- and nano-patterns created via electrohydrodynamic instabilities. Nano Today 4:180–192

    Google Scholar 

  10. Saville DA (1997) Electrohydrodynamics: the Taylor–Melcher leaky dielectric model. Annu Rev Fluid Mech 29:27–64

    Google Scholar 

  11. Pease LF, Russel WB (2003) Electrostatically induced submicron patterning of thin perfect and leaky dielectric films: a generalized linear stability analysis. J Chem Phys 118:3790–3803

    Article  ADS  Google Scholar 

  12. Shankar V, Sharma A (2004) Instability of the interface between thin fluid films subjected to electric fields. J Colloid Interface Sci 274:294–308

    Article  Google Scholar 

  13. Craster RV, Matar OK (2005) Electrically induced pattern formation in thin leaky dielectric films. Phys Fluids 17:032104

    Article  ADS  Google Scholar 

  14. Wu N, Pease LF, Russel WB (2005) Electric-field-induced patterns in thin polymer films: weakly nonlinear and fully nonlinear evolution. Langmuir 21:12290–12302

    Google Scholar 

  15. Bandyopadhyay D, Sharma A (2007) Electric field induced instabilities in thin confined bilayers. J Colloid Interface Sci 311: 595–608

    Google Scholar 

  16. Roberts SA, Kumar S (2009) AC electrohydrodynamic instabilities in thin liquid films. J Fluid Mech 631:255–279

    Google Scholar 

  17. Deissler RJ, Oron A (1992) Stable localized patterns in thin liquid films. Phys Rev Lett 68:2948–2951

    Article  ADS  Google Scholar 

  18. Yeo LY, Craster RV, Matar OK (2003) Marangoni instability of a thin liquid film resting on a locally heated horizontal wall. Phys Rev B 67:056315

    Article  MathSciNet  ADS  Google Scholar 

  19. Schaffer E, Harkema S, Roerdink M, Blossey R, Steiner U (2003) Morphological instability of a confined polymer film in a thermal gradient. Macromolecules 36:1645–1655

    Article  ADS  Google Scholar 

  20. Dietzel M, Troian SM (2009) Formation of nanopillar arrays in ultrathin viscous films: the critical role of thermocapillary stresses. Phys Rev Lett 103:074501

    Article  ADS  Google Scholar 

  21. Dietzel M, Troian SM (2010) Mechanism for spontaneous growth of nanopillar arrays in ultrathin films subject to a thermal gradient. J Appl Phys 108:074308

    Article  ADS  Google Scholar 

  22. McLeod E, Liu Y, Troian SM (2011) Experimental verification of the formation mechanism for pillar arrays in nanofilms subject to large thermal gradients. Phys Rev Lett 106:175501

    Article  ADS  Google Scholar 

  23. Wu L, Chou SY (2005) Electrohydrodynamic instability of a thin film of viscoelastic polymer underneath a lithographically manufactured mask. J Non-Newtonian Fluid Mech 125:91–99

    Google Scholar 

  24. Tomar G, Shankar V, Sharma A, Biswas G (2007) Electrohydrodynamic instability of a confined viscoelastic liquid film. J Non-Newtonian Fluid Mech 143:120–130

    Google Scholar 

  25. Espin L, Corbett A, Kumar S (2013) Electrohydrodynamic instabilities in thin viscoelastic films—AC and DC fields. J Non-Newtonian Fluid Mech 196:102–111

    Google Scholar 

  26. Morrison FA (2001) Understanding rheology. Oxford University Press, Oxford

    MATH  Google Scholar 

Download references

Acknowledgments

This material is based on work supported by the Department of Energy under Award Number DE-FG02-07ER46415.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satish Kumar.

Appendix

Appendix

Shown below are the nonlinear evolution equations for height and charge in a leaky dielectric film:

$$\begin{aligned} \frac{\partial h}{\partial t}&= -\frac{1}{3} (1+h)^3 \frac{\partial ^4 h}{\partial x^4} - (1+h)^2 \frac{\partial ^3 h}{\partial x^3} \frac{\partial h}{\partial x} + \frac{(1+h)^3}{6(h(1-\varepsilon )+1+\beta \varepsilon )^2} \left( \frac{\partial q}{\partial x}\right) ^2 A_1 \nonumber \\&- \frac{(1+h)^2}{6(h(1-\varepsilon )+1+\beta \varepsilon )^3} \frac{\partial ^2 h}{\partial x^2} A_2 + \frac{(1+h)}{(h(1-\varepsilon )+1+\beta \varepsilon )^4} \left( \frac{\partial h}{\partial x} \right) ^2 A_3 \nonumber \\&+ \frac{(1+h)^3}{6(h(1-\varepsilon )+1+\beta \varepsilon )^2} \frac{\partial ^2 q}{\partial x^2} A_4 - \frac{(1+h)^2}{6(h(1-\varepsilon )+1+\beta \varepsilon )^3} \left( \frac{\partial h}{\partial x} \right) \left( \frac{\partial q}{\partial x} \right) A_5 \nonumber \\&+ \frac{1}{2} (1+h)^2 \mathrm {M} \frac{\partial ^2 \theta (z=h)}{\partial x^2} + (1+h)\mathrm {M} \frac{\partial h}{\partial x} \frac{\partial \theta (z=h)}{\partial x}, \end{aligned}$$
(68)
$$\begin{aligned} \frac{\partial q}{\partial t}&= \frac{1}{2}q(1+h)^2 \frac{\partial ^4 h}{\partial x^4} - \frac{1}{2} (1+h)^2 \frac{\partial q}{\partial x}\frac{\partial ^3 h}{\partial x^3} - q(1+h)\frac{\partial ^3 h}{\partial x^3}\frac{\partial h}{\partial x} \nonumber \\&+ \frac{q}{2(h(1-\varepsilon ) + 1 +\beta \varepsilon )^4} \left( \frac{\partial h}{\partial x} \right) ^2 B_1 + \frac{(1+h)^2}{2(h(1-\varepsilon )+1+\beta \varepsilon )^2} \left( \frac{\partial q}{\partial x} \right) ^2 B_2 \nonumber \\&+ \frac{q(1+h)^2}{2(h(1-\varepsilon )+1+\beta \varepsilon )^2} \frac{\partial ^2 q}{\partial x^2} B_3 - \frac{q(1+h)}{2(h(1-\varepsilon )+1+\beta \varepsilon )^3} \frac{\partial ^2 h}{\partial x^2} B_4 \nonumber \\&- \frac{(1+h)}{2(h(1-\varepsilon ) + 1+\beta \varepsilon )^3} \frac{\partial h}{\partial x} \frac{\partial q}{\partial x} B_5 + \frac{1+q(h-\beta )}{h(1-\varepsilon )+1+\beta \varepsilon } \sigma \nonumber \\&+ \,\mathrm {M}(1+h) \left( \frac{\partial q}{\partial x} \frac{\partial \theta (z=h)}{\partial x} + q\frac{\partial ^2 \theta (z=h)}{\partial x^2} \right) + \mathrm {M} q\frac{\partial h}{\partial x}\frac{\partial \theta (z=h)}{\partial x}. \end{aligned}$$
(69)

The coefficients of the nonlinear evolution equations are

$$\begin{aligned} A_1&= -2 + 3\beta + h(-7+\beta (10\varepsilon -3)) + 5h^2(\varepsilon -1) + 5\beta ^2 \varepsilon , \end{aligned}$$
(70)
$$\begin{aligned} A_2&= \, 2(1+h)(\varepsilon -1)^2\varepsilon + q (1+\beta )\varepsilon \left[ -1+h(\varepsilon -1) + (4+3\beta )\varepsilon \right] \nonumber \\&+\, q^2 \left[ 3 + 3h^2(\varepsilon -1)^2 + (2+7\beta -\beta ^2)\varepsilon - 3\beta ^3\varepsilon ^2 - 9h^2(\varepsilon -1)(1+\beta \varepsilon ) \right. \nonumber \\&\left. + \,h\left( 9 - (1-16\beta +\beta ^2)\varepsilon + 9\beta ^2\varepsilon ^2 \right) \right] , \end{aligned}$$
(71)
$$\begin{aligned} A_3&= -(1+h)(1+\beta )(\varepsilon -1)^2\varepsilon ^2 - q(1+\beta )^2\varepsilon ^2 \left[ -1 +h(\varepsilon -1) + (2+\beta )\varepsilon \right] \nonumber \\&+\, q^2 \left[ -1 + h^4(\varepsilon -1)^3 - \varepsilon - 4\beta \varepsilon - \varepsilon ^2 - 4\beta \varepsilon ^2 - 6\beta ^2\varepsilon ^2 + \beta ^4\varepsilon ^3\right. \nonumber \\&\left. -\, 4h^3(\varepsilon -1)^2(1+\beta \varepsilon ) - 4h(1+\beta \varepsilon )^3 + 6(\varepsilon -1)h^2(1+\beta \varepsilon )^2 \right] , \end{aligned}$$
(72)
$$\begin{aligned} A_4&= -2(1+\beta )\varepsilon + q\left[ -2 + 3\beta + 5h^2(\varepsilon -1) + 5\beta ^2\varepsilon + h(-7+3\beta -10\beta \varepsilon )\right] , \end{aligned}$$
(73)
$$\begin{aligned} A_5&= (1+\beta )\varepsilon (1+h+8\varepsilon -h\varepsilon +9\beta \varepsilon ) \nonumber \\&+ \,q \left[ 15 - 6\beta + 21h^3(\varepsilon -1)^2 + 8\varepsilon + 31\beta \varepsilon - 19\beta ^2\varepsilon - 21\beta ^3\varepsilon ^2 - 3h^2(\varepsilon -1)(19+\beta (21\varepsilon -2)) \right. \nonumber \\&\left. +\, h\left( 51 - 7\varepsilon + 4\beta (25\varepsilon -3) + \beta ^2\varepsilon (63\varepsilon -19) \right) \right] , \end{aligned}$$
(74)
$$\begin{aligned} B_1&= -2q(1+\beta )^2\varepsilon ^2 \left[ -2 - 2h(\varepsilon -1) + (3+\beta )\varepsilon \right] - (1+h)(\varepsilon -1)^2 \varepsilon \left( -1 + h(\varepsilon -1) + (3+2\beta )\varepsilon \right) \nonumber \\&+\, q^2 \left[ -2 + 2h^4(\varepsilon -1)^3 - (3+10\beta +\beta ^2)\varepsilon - (3 + 12\beta + 17\beta ^2 + 2\beta ^3)\varepsilon ^2 + 2\beta ^4\varepsilon ^3 \right. \nonumber \\&-\,8h^3(\varepsilon -1)^2(1+\beta \varepsilon ) + h^2(\varepsilon -1)\left( 12 + (1+26\beta +\beta ^2)\varepsilon + 12\beta ^2\varepsilon ^2 \right) \nonumber \\&\left. -\,2h \left( 4 + (1+14\beta +\beta ^2)\varepsilon + \beta (1+14\beta +\beta ^2)\varepsilon ^2 + 4\beta ^3\varepsilon ^3 \right) \right] , \end{aligned}$$
(75)
$$\begin{aligned} B_2&= -(1+\beta )\varepsilon + 2q\left[ -1 + 2\beta + 3h^2(\varepsilon -1) + 3\beta ^2\varepsilon + h(-4+2\beta -6\beta \varepsilon )\right] , \end{aligned}$$
(76)
$$\begin{aligned} B_3&= -(1+\beta )\varepsilon + q \left[ -1 + 2\beta + 3h^2(\varepsilon -1) + 3\beta ^2\varepsilon + h(-4+2\beta -6\beta \varepsilon )\right] , \end{aligned}$$
(77)
$$\begin{aligned} B_4&= (1+h)(\varepsilon -1)^2\varepsilon + 2q(1+\beta )^2\varepsilon ^2 \nonumber \\&+\, q^2 \left[ 2 + 2h^3(\varepsilon -1)^2 + \varepsilon + 4\beta \varepsilon - \beta ^2\varepsilon - 2\beta ^3\varepsilon ^2 - 6h^2(\varepsilon -1)(1+\beta \varepsilon ) \right. \nonumber \\&\left. \qquad \qquad +\, h\left( 6- (1-10\beta +\beta ^2)\varepsilon + 6\beta ^2\varepsilon ^2 \right) \right] , \end{aligned}$$
(78)
$$\begin{aligned} B_5&= (1+h)(\varepsilon -1)^2\varepsilon + 6q(1+\beta )^2\varepsilon ^2 \nonumber \\&+ \, q^2 \left[ 10 - 2\beta + 12h^3(\varepsilon -1)^2 + 5\varepsilon + 20\beta \varepsilon - 9\beta ^2\varepsilon - 12\beta ^3\varepsilon ^2 - 2h^2(\varepsilon -1)(17+\beta (18\varepsilon -1)) \right. \nonumber \\&\left. \qquad \qquad + \,h\left( 32 - 5\varepsilon + 9\beta ^2\varepsilon (4\varepsilon -1) + \beta (58\varepsilon -4)\right) \right] , \end{aligned}$$
(79)
$$\begin{aligned} \frac{\partial \theta (z=h)}{\partial x}&= \frac{-\kappa (\beta +1)}{(h(\kappa -1)+\beta +\kappa )^2}\frac{\partial h}{\partial x}, \end{aligned}$$
(80)
$$\begin{aligned} \frac{\partial ^2 \theta (z=h)}{\partial x^2}&= -\frac{\kappa (\beta +1)}{(h(\kappa -1)+\beta +\kappa )^2} \frac{\partial ^2 h}{\partial x^2} + \frac{2\kappa (\kappa -1)(1+\beta )}{(h(\kappa -1)+\beta +\kappa )^3} \left( \frac{\partial h}{\partial x} \right) ^2. \end{aligned}$$
(81)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corbett, A., Kumar, S. Combined thermal and electrohydrodynamic patterning of thin liquid films. J Eng Math 94, 81–96 (2015). https://doi.org/10.1007/s10665-013-9680-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-013-9680-3

Keywords

Navigation