Skip to main content

Advertisement

Log in

Design of an Air-Quality Surveillance System for Buenos Aires City Integrated by a NO x Monitoring Network and Atmospheric Dispersion Models

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

This paper presents an air-quality surveillance system designed to detect the occurrence of air pollutant concentrations greater than a reference level in an urban area. The system is integrated by an air-quality monitoring network and atmospheric dispersion models simulations. An objective methodology to design an urban air-quality monitoring network is proposed. This methodology is based on the analysis of air-quality modelling results. The procedure is applied to design an air-quality monitoring network to control NO x concentration levels in Buenos Aires City. Results indicate that six monitors will detect the occurrence of concentration greater than the air-quality guidelines with an efficiency of about 67%. Once a violation is detected, results of atmospheric dispersion models will help in the determination of affected areas. Four possible examples are included to illustrate the assistance that the results of atmospheric dispersion models can bring to a better estimation of possible affected areas in the city. Combining these results with the last census data, an estimation of the inhabitants possibly exposed is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Arya, S. P. (1988). Introduction to micrometeorology. San Diego, CA: Academic.

    Google Scholar 

  2. Berkowicz, R. (2000). A simple model for urban background pollution. Environmental Monitoring & Assessment, 65, 259–267.

    Article  CAS  Google Scholar 

  3. Bogo, H., Negri, R. M., & San Román, E. (1999). Continuous measurement of gaseous pollutants in Buenos Aires City. Atmospheric Environment, 33, 2587–2598.

    Article  CAS  Google Scholar 

  4. Bogo, H., Otero, M., Castro, P., Ozafrán, M. J., Kreimer, A., & Calvo, E. J., et al. (2003). Study of atmospheric particulate matter in Buenos Aires city. Atmospheric Environment, 37, 1135–1147.

    Article  CAS  Google Scholar 

  5. Borrego, C., Tchepel, O., Costa, A. M., Amorim, J. H., & Miranda, A. I. (2003). Emission and dispersion modelling of Lisbon air quality at local scale. Atmospheric Environment, 37, 5197–5205.

    Article  CAS  Google Scholar 

  6. Chen, Ch.-H., Liu, W.-L., & Chen, Ch.-H. (2006). Development of multiple objective planning theory and system for sustainable air quality monitoring networks. Science of The Total Environment, 354(1), 1–19.

    Article  CAS  Google Scholar 

  7. Derwent, R. G., & Middleton, D. R. (1996). An empirical function for the ratio NO2:NO x . Clean Air, 26, 57–60.

    Google Scholar 

  8. Dixon, J., Middleton, D. R., & Derwent, R. G. (2000). Using measurements of nitrogen oxides to estimate the emission controls required to meet the UK nitrogen dioxide standard. Environmental Monitoring & Assessment, 65, 3–11.

    Article  CAS  Google Scholar 

  9. EMEP/CORINAIR (2004). Emission Inventory Guidebook (3rd ed.). Update. Technical Report no. 30. European Environ. Agency (from: www.reports.eea.eu.int/EMEPCORINAIR4/en).

  10. Gifford, F. A. (1970). Atmospheric diffusion in an urban area (p. 8). Boulder, COL: NOAA Earth System Research Laboratory (33).

  11. Gifford, F. A., & Hanna, S. R. (1973). Modelling urban air pollution. Atmospheric Environment, 7, 131–136.

    Article  CAS  Google Scholar 

  12. Gryning, S. E., Footslog, A. A. M., Irwin, J. S., & Sivertsen, B. (1987). Applied dispersion modelling based on meteorological scaling parameters. Atmospheric Environment, 21, 79–89.

    Article  CAS  Google Scholar 

  13. Hall, D. J., Spanton, A. M., Bennett, M., Dunkerley, F., Griffiths, R. F., Fisher, B. E. A., et al. (2002). Evaluation of new generation atmospheric dispersion models. International J. of Environment & Pollution, 18, 22–32.

    Article  CAS  Google Scholar 

  14. Handscombe, C. M., & Elsom, D. M. (1982). Rationalisation of the national survey of air pollution monitoring network of the United Kingdom using spatial correlation analysis: A case-study of the greater London area. Atmospheric Environment, 16, 1061–1070.

    Article  CAS  Google Scholar 

  15. Hanna, S. R., Britter, R., & Franzese, P. (2002). Simple screening models for urban dispersion. In E. Batchvarova & D. Syrakov (Eds.), 8th conference on harmonisation within atmospheric dispersion modelling for regulatory purposes (pp. 269–273). Bulgaria: Demetra.

    Google Scholar 

  16. Hanna, S. R., Egan, B. A., Purdum, J., & Wagler, J. (2001). Evaluation of the ADMS, AERMOD and ISC3 dispersion models with the OPTEX, Duke Forest, Kincaid, Indianapolis and Lovett Field data sets. International Journal of Environment & Pollution, 16, 301–314.

    CAS  Google Scholar 

  17. Husain, T., & Khan, S. M. (1983). Air monitoring network design using Fisher’s Information Measures – A case study. Atmospheric Environment, 17, 2591–2598.

    Article  CAS  Google Scholar 

  18. Janssen, L., van Wakeren, J., van Duuren, H., & Elshout, A. (1988). A classification of NO oxidation rates in power plants plumes based on atmospheric conditions. Atmospheric Environment, 22, 43–53.

    Article  CAS  Google Scholar 

  19. Kanaroglou, P. S., Jerrett, M., Morrison, J., Beckerman, B., Arain, M. A., Gilbert, N. L., et al. (2005). Establishing an air pollution monitoring network for intra-urban population exposure assessment: A location-allocation approach. Atmospheric Environment, 39, 2399–2409.

    Article  CAS  Google Scholar 

  20. Karppinen, A., Kukkonen, J., Elolähde, T., Konttinen, M., Koskentalo, T., & Rantakrans, E. (2000). A modelling system for predicting urban air pollution: model description and applications in the Helsinki metropolitan area. Atmospheric Environment, 34, 3723–3733.

    Article  CAS  Google Scholar 

  21. Mazzeo, N. A., & Venegas, L. E. (1991). Air pollution model for an urban area. Atmospheric Research, 26, 165–179.

    Article  CAS  Google Scholar 

  22. Mazzeo, N. A., & Venegas, L. E. (2000). Practical use of the ISCST3 model to select monitoring site locations for air pollution control. International Journal of Environment & Pollution, 14, 246–259.

    CAS  Google Scholar 

  23. Mazzeo, N. A., & Venegas, L. E. (2002). Estimation of cumulative frequency distribution for carbon monoxide concentration from wind-speed data in Buenos Aires (Argentina). Water, Air & Soil Pollution: Focus, 2, 419–432.

    Article  CAS  Google Scholar 

  24. Mazzeo, N. A., & Venegas, L. E. (2003). Carbon monoxide and nitrogen oxides emission inventory for Buenos Aires City (Argentina). In R. S. Sokhi & J. Brechler (Eds.), Fourth international conference on urban air quality-measurement, modelling & management (pp. 159–162). UK: University of Hertfordshire.

    Google Scholar 

  25. Mazzeo, N. A., Venegas, L. E., & Choren, H. (2005). Analysis of NO, NO2, O3 and NOX concentrations measured at a green area of Buenos Aires city during wintertime. Atmospheric Environment, 39, 3055–3068.

    Article  CAS  Google Scholar 

  26. McHugh, C. A., Carruthers, D. J., & Edmunds, H. A. (1997). ADMS-Urban: An air quality management system for traffic, domestic and industrial pollution. International Journal of Environment & Pollution, 8, 437–440.

    Google Scholar 

  27. Morris, R. E., & Myers, T. C. (1990). User’s guide to the urban airshed model (Vols 1–5). North Carolina: US Environmental Protection Agency, Research Triangle Park.

    Google Scholar 

  28. Moussiopoulos, N., Berge, E., Bohler, T., de Leeuw, F., Gronskei, K.-E., & Mylona, S., et al. (1996). Ambient air quality, pollutant dispersion and transport models. Copenhagen: European Environment Agency (Topic Report 19, Air Quality).

    Google Scholar 

  29. Noll, K. E., & Mitsutomi, S. (1983). Design methodology for optimum dosage air monitoring site selection. Atmospheric Environment, 17, 2583–2590.

    Article  CAS  Google Scholar 

  30. Owen, B., Edmunds, H. A., Carruthers, D. J., & Singles, R. J. (2000). Prediction of total oxides of nitrogen and nitrogen dioxide concentrations in a large urban area using a new generation urban scale dispersion model with integral chemistry model. Atmospheric Environment, 34, 397–406.

    Article  CAS  Google Scholar 

  31. Pasquill, F., & Smith, F. B. (1983). Atmospheric diffusion. New York: Wiley.

    Google Scholar 

  32. Tseng, C. C., & Chang, N.-B. (2001). Assessing relocation strategies of urban air quality monitoring stations by GA-based compromise programming. Environment International, 26, 523–541.

    Article  CAS  Google Scholar 

  33. Ulke, A. G., & Mazzeo, N. A. (1998). Climatological aspects of the daytime mixing height in Buenos Aires city, Argentina. Atmospheric Environment, 32, 1615–1622.

    Article  CAS  Google Scholar 

  34. U.S. EPA (1995). User’s guide for industrial source complex (ISC3). North Carolina: US Environmental Protection Agency, Office of Air Quality Panning and Standards Emissions, Monitoring and Analysis Divisions, Research Triangle Park (US EPA-454/B-95-003).

  35. Venegas, L. E., & Mazzeo, N. A. (2000). Carbon monoxide concentrations in a street canyon at Buenos Aires City (Argentina). Environmental Monitoring & Assessment, 65, 417–424.

    Article  CAS  Google Scholar 

  36. Venegas, L. E., & Mazzeo, N. A. (2002). An evaluation of DAUMOD model in estimating urban background concentration. Water, Air & Soil Pollution: Focus, 2, 433–443.

    Article  CAS  Google Scholar 

  37. Venegas, L. E., & Mazzeo, N. A. (2003). Design methodology for background air pollution monitoring site selection in an urban area. International Journal of Environment & Pollution, 20, 185–195.

    CAS  Google Scholar 

  38. Venegas, L. E., & Mazzeo, N. A. (2005). Application of atmospheric dispersion models to evaluate population exposure to NO2 concentration in Buenos Aires. International Journal of Environment & Pollution, 25, 224–238.

    Article  CAS  Google Scholar 

  39. Venegas, L. E., & Mazzeo, N. A. (2006). Modelling of urban background pollution in Buenos Aires (Argentina). Environmental Modelling & Software, 21, 577–586.

    Article  Google Scholar 

  40. Yegnan, A., Williamson, D. G., & Graettinger, A. J. (2002). Uncertainty analysis in air dispersion modeling. Environmental Modelling & Software, 17, 639–649.

    Article  Google Scholar 

Download references

Acknowledgements

This study has been supported by Projects UBACYT-X060, FONCYT PICT2000 no. 13-09544 and CONICET-PIP 6169. The authors wish to thank the National Meteorological Service of Argentina for supplying meteorological data used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolás A. Mazzeo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazzeo, N.A., Venegas, L.E. Design of an Air-Quality Surveillance System for Buenos Aires City Integrated by a NO x Monitoring Network and Atmospheric Dispersion Models. Environ Model Assess 13, 349–356 (2008). https://doi.org/10.1007/s10666-007-9101-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-007-9101-y

Keywords

Navigation