Skip to main content

Advertisement

Log in

Estimation of the impact of oil palm plantation establishment on greenhouse gas balance

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Estimates of emissions indicate that if tropical grassland is rehabilitated by oil palm plantations, carbon fixation in plantation biomass and soil organic matter not only neutralises emissions caused by grassland conversion, but also results in the net removal of about 135 Mg carbon dioxide per hectare from the atmosphere. In contrast, the emission from forest conversion clearly exceeds the potential carbon fixation of oil palm plantings. Forest conversion on mineral soils to promote continued oil palm mono cropping causes a net release of approximately 650 Mg carbon dioxide equivalents per hectare, while the emission from peat forest conversion is even higher due to the decomposition of drained peat and the resulting emission of carbon oxide and nitrous oxide. The conversion of one hectare of forest on peat releases over 1,300 Mg carbon dioxide equivalents during the first 25-year cycle of oil palm growth. Depending on the peat depth, continuous decomposition augments the emission with each additional cycle at a magnitude of 800 Mg carbon dioxide equivalents per hectare.

The creation of ‘flexibility mechanisms’ such as the clean development mechanism and emission trading in the Kyoto Protocol could incorporate plantations as carbon sinks in the effort to meet emission targets. Thus, for the oil palm industry, grassland rehabilitation is an option to preserve natural forest, avoid emissions and, if the sequestered carbon becomes tradable, an opportunity to generate additional revenue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Andersson, M., Michelsen, A., Jensen, M., & Kjoller, A. (2004). Tropical savannah woodland: Effects of experimental fire on soil microorganisms and soil emissions of carbon dioxide. Soil Biology & Biochemistry, 36(5), 849–858.

    Article  CAS  Google Scholar 

  • Anderson, J. M., & Swift, M. J. (1983). Decomposition in tropical forests. In S. L. Sutton, T. C. Whitmore, & A. C. Chadwick (Eds.), Tropical rain forest: ecology and management (pp. 287–309). Oxford, UK: Blackwell.

    Google Scholar 

  • Andreae, M. O. (1991). Biomass burning: Its history, use and distribution and impact on environmental quality and global climate. In J. S. Levine (Ed.), Global biomass burning: Atmospheric, climatic and biospheric implications (pp. 3–21). Cambridge, Mass., USA: MIT Press.

  • Araujo, T. M., Carvalho, J. A., Higuchi, N., Brasil, A. C. P., & Mesquita, A. L. A. (1999). A tropical rainforest clearing experiment by biomass burning in the state of Para, Brazil. Atmospheric Environment, 33, 1991–1998.

    Article  CAS  Google Scholar 

  • Arunachalam, A., Pandey, H. N., Tripathi, R. S., & Maithani, K. (1996). Fine root decomposition and nutrient mineralization patterns in a subtropical humid forest following tree cutting. Forest Ecology and Management, 86, 141–150.

    Article  Google Scholar 

  • Baggs, E. M., Cadisch, G., Verchot, L., Millarn, N., & Ndufa, J. K. (2002). Environmental impacts of tropical agricultural systems: N 2 O emissions and organic matter management, 17th World Soil Science Conference ‘Soil Science: Confronting New Realities in the 21st Century’ (pp. 1–11). Bangkok, Thailand: International Soil Sciences Congress.

    Google Scholar 

  • Basiron, Y., & Weng C. K. 2004. The oil palm and its sustainability. Journal of Oil Palm Research, 16(1), 1–10.

    Google Scholar 

  • Bird, M. I., Veenendaal, E. M., Moyo, C., Lloyd, J., & Frost, P. (2000). Effect of fire and soil texture on soil carbon in a sub-humid savanna (Matopos, Zimbabwe). Geoderma, 94, 71–90.

    Article  CAS  Google Scholar 

  • Braconnier, S., & Caliman, J.-P. (1989). Premiers résultats concernant l’étude du systéme racinaire du palmier à huile en sol dégradé, Rapport Interne, L’Institut de recherches pour les huiles et oléagineux, 12 pp. Paris, France.

  • Brown, S. (1997). Estimating biomass and biomass change of tropical forests: A primer 55 pp. Rome, Italy: FAO Forestry Papers, FAO.

  • Brown, S., & Gaston, G. (2001). Tropical Africa: Land use, biomass, and carbon estimates for 1980. Oak Ridge National Laboratory, Carbon Dioxide Information Center, Oak Ridge, Tennessee, USA. Accessed on, 12.11.2004, Available at: http://cdiac.esd.ornl.gov/epubs/ndp/ndp055/ndp055.html.

  • Brown, S., Iverson, L. R., Prasad, A., & Liu, D. (1993). Geographical distributions of carbon in biomass and soils of tropical Asian forests. Geocarto International, 4, 45–59.

    Article  Google Scholar 

  • Brown, S., & Lugo, A. E. (1982). The storage and production of organic matter in tropical forest and their role in the global carbon cycle. Biotropica, 14, 161–187.

    Article  Google Scholar 

  • Brown, S., & Lugo, A. E. (1984). Biomass of tropical forests: A new estimate based on forest volumes. Science, 223, 1290–1293.

    Article  Google Scholar 

  • Bryant, D., Burke, L., Mc Manus, J., & Spalding, M. (1998). Reefs at risk. A map-based indicator of the threats to the world´s coral reefs. Washington, USA: World Resources Institute.

    Google Scholar 

  • Bulla, L., & Lourido, J. (1980). Production, decomposition and diversity in three savannas of the Amazonas territory (Venezuela). In J. I. Furtado (Ed.), Tropical Ecology and Development - Proceedings of the Fifth International Symposium on tropical ecology. International Society of Tropical Ecology, Kuala Lumpur, Malaysia, pp. 73–77.

  • Casson, A. (2000). The hesitant boom: Indonesia’s oil palm sub-sector in an era of economic crisis and political change. Bogor, Indonesia: Occasional Paper 29, CIFOR.

    Google Scholar 

  • Chambers, J. Q., Higuchi, N., Schimel, J. P., Ferreira, L. V., & Melack, J. M. (2000). Decomposition and carbon cycling of dead trees in tropical forests of the central Amazon. Oecologia, 122, 380–388.

    Article  Google Scholar 

  • Chikoye, D., & Ekeleme, F. (2003). Cover crops for cogongrass (Imperata cylindrica) management and effects on subsequent corn yield. Weed Science, 51(5), 792–797.

    Article  CAS  Google Scholar 

  • Chikoye, D., Manyong, V. M., & Ekeleme, F. (2000). Characteristics of speargrass (Imperata cylindrica) dominated fields in West Africa: Crops, soil properties, farmer perceptions and management strategies. Crop Protection, 19, 481–487.

    Article  Google Scholar 

  • Corley, R. H. V., & Tinker, P. B. (2003). The oil palm. Oxford, UK: Blackwell Science.

    Google Scholar 

  • Davies, S. J., & Unam, L. (1999). Smoke-haze from the 1997 Indonesian forest fires: Effects on pollution levels, local climate, atmospheric CO2 concentrations, and tree photosynthesis. Forest Ecology and Management, 124, 137–144.

    Article  Google Scholar 

  • de Castro, E. A., & Kauffman, J. B. (1998). Ecosystem structure in the Brazilian cerrado: A vegetation gradient of aboveground biomass, root mass and consumption by fire. Journal of Tropical Ecology, 14, 263–286.

    Article  Google Scholar 

  • Delitti, W. B. C., Pausas, J. G., & Burger, D. M. (2001). Belowground biomass seasonal variation in two Neotropical savannahs (Brazilian Cerrados) with different fire histories. Annals of Forest Science, 58(7), 713–721.

    Article  Google Scholar 

  • Driessen, P., Deckers, J., & Spaargaren, O. (Eds.) (2001). Lecture notes on the major soils of the world 344 pp. Rome, Italy.

  • Ezenwa, I., Aribisala, O. A., & Aken’ova, M. E. (1996). Research note: Dry matter yields of Panicum and Brachiaria with nitrogen fertilisation or Pueraria in an oil palm plantation. Tropical Grasslands, 30, 414–417.

    Google Scholar 

  • Fairhurst, T. (1996). Management of nutrients for efficient use in smallholder oil palm plantations. PhD Thesis, Department of Biology, Imperial College at Wye, University of London, Wye, Ashford, Kent, UK.

  • FAOSTAT data. (2005). Accessed on, 06.11.2005, Available at: http://faostat.fao.org.

  • Fearnside, P. M. (2000). Global warming and tropical land-use change: Greenhouse gas emissions from biomass burning, decomposition and soils in forest conversion, shifting cultivation and secondary vegetation. Climatic Change, 46, 115–158.

    Article  CAS  Google Scholar 

  • Fearnside, P. M., & Barbosa, R. I. (1998). Soil carbon changes from conversion of forest to pasture in Brazilian Amazonia. Forest Ecology and Management, 108(1–2), 147–166.

    Article  Google Scholar 

  • Furukawa, Y., Inubushi, K., Ali, M., Itang, A. M., & Tsuruta, H. (2005). Effect of changing groundwater levels caused by land-use changes on greenhouse gas fluxes from tropical peat lands. Nutrient Cycling in Agroecosystems, 71(1), 81–91.

    Article  CAS  Google Scholar 

  • García-Oliva, F., Casar, I., Morales, P., & Maass, J. M. (1994). Forest-to-pasture conversion influences on soil organic carbon dynamics in a tropical deciduous forest. Oecologia, 99, 392–396.

    Article  Google Scholar 

  • Germer, J. (2003). Spatial undergrowth species composition in oil palm (Elaeis guineensis Jacq.) in West Sumatra. PhD Thesis, Institute for Plant Production and Agroecology in the Tropics and Subtropics, University of Hohenheim, Stuttgart, Germany.

  • Germer, J., & Sauerborn, J. (2004). Solar radiation below the oil palm (Elaeis guineensis Jacq.) canopy and its impact on the undergrowth species composition. The Planter, 80(934):13–27.

    Google Scholar 

  • Gerritsma, W., & Soebagyo, F. X. (1999). An analysis of the growth of leaf area of oil palms in Indonesia. Experimental Agriculture, 35, 293–308.

    Article  Google Scholar 

  • Giardina, C. P., Binkley, D., Ryan, M. G., Fownes, J. H., & Senock, R. S. (2004). Belowground carbon cycling in a humid tropical forest decreases with fertilization. Oecologia, 139(4), 545–550.

    Article  Google Scholar 

  • Gijsman, A. J., Alarcón, H. F., & Thomas, R. J. (1997). Root decomposition in tropical grasses and legumes, as affected by soil texture and season. Soil Biology & Biochemistry, 29(9/10), 1443–1450.

    Article  CAS  Google Scholar 

  • Goldammer, J. G. (1993). Feuer in Waldökosystemen der Tropen und Subtropen. Basel, Switzerland: Birkhäuser.

    Google Scholar 

  • Goldammer, J. G. (1997). Overview of fire and smoke management issues and options in tropical vegetation. In H. A. Hassan, D. Taha, M. P. Dahalan, & A. Mahmud (Eds.), Transboundary pollution and the sustainability of tropical forests: Towards wise forest fire management—The Proceedings of the AIFM International Conference, ASEAN Institute for Forest Management (pp. 189–217). Kuala Lumpur: Ampang Press.

  • Hadi, A., Inubushi, K., Purnomo, E., Razie, F., Yamakawa, K., & Tsuruta, H. (2000). Effect of land-use changes on nitrous oxide (N2O) emission from tropical peatlands. Chemosphere—Global Change Science, 2, 347–358.

    Article  CAS  Google Scholar 

  • Hadi, A., Inubushi, K., Furukawa, Y., Purnomo, E., Rasmadi, M., & Tsuruta, H. (2005). Greenhouse gas emissions from tropical peatlands of Kalimantan, Indonesia. Nutrient Cycling in Agroecosystems, 71(1), 73–80.

    Article  CAS  Google Scholar 

  • Hamer, W. I. (1981). Soil conservation. In Consultant’s report, Technical Note No.7 and No. 10. UNDP, In: MacKinnon, K., Hatta, G., Halim, H., and Mangalik, A. (1996): The Ecology of Kalimantan. Periplus Editions (HK) Ltd, Singapore.

  • Haron, K., Zakariae, Z. Z., & Anderson, J. M. (1999a). Mineralisation of soil organic carbon and nitrogen in relation to residue management following replanting of an oil palm plantation. Journal of Oil Palm Research, 11, 72–88.

    Google Scholar 

  • Haron, K., Zakariae, Z. Z., & Anderson, J. M. (1999b). Quantification of oil palm biomass and nutrient value in a mature plantation. I. Above-ground biomass. Journal of Oil Palm Research, 11(1), 23–32.

    Google Scholar 

  • Haron, K., Zakariae, Z. Z., & Anderson, J. M. (1999c). Quantification of oil palm biomass and nutrient value in a mature plantation. II. Below-ground biomass. Journal of Oil Palm Research, 11(2), 63–71.

    Google Scholar 

  • Hartemink, A. E. (2001). Biomass and nutrient accumulation of Piper aduncum and Imperata cylindrica fallows in the humid lowlands of Papua New Guinea. Forest Ecology and Management, 144(1–3):19–32.

    Article  Google Scholar 

  • Hartemink, A. E. (2004). Nutrient stocks of short-term fallows on a high base status soil in the humid tropics of Papua New Guinea. Agroforestry Systems, 63(1), 33–43.

    Google Scholar 

  • Hartley, C. W. S. (1988). The oil palm. Harlow, UK: Longman.

    Google Scholar 

  • Hashimoto, T., Kojima, K., Tange T., & Sasaki, S. (2000). Changes in carbon storage in fallow forests in the tropical lowlands of Borneo. Forest Ecology and Management, 126, 331–337.

    Article  Google Scholar 

  • Henson, I. E. (1998). Notes on oil palm productivity. I. Productivity at two contrasting sites. Elaeis, 10(1), 57–67.

    Google Scholar 

  • Henson, I. E., & Chai, S. H. (1997). Analysis of oil palm productivity. II. Biomass, distribution, productivity and turnover of the root system. Elaeis, 9(2), 78–92.

    Google Scholar 

  • Henson, I. E., & Dolmat, M. T. (2003). Physiological analysis of an oil palm density trial on a peat soil. Journal of Oil Palm Research, 15(2), 1–27.

    Google Scholar 

  • Holmes, J. H. G., Lemerle, C., & Schottler, J. H. (1980). Imperata cylindrica for cattle production in Papua New Guinea. Papua New Guinea Agricultural Journal, 31, 51–62.

    Google Scholar 

  • Houghton, R. A. (2005). Aboveground forest biomass and the global carbon balance. Global Change Biology, 11(6), 945–958.

    Article  Google Scholar 

  • Houghton, R. A., & Goodale, C. L. (2004). Effects of land-use change on the carbon balance of terrestrial ecosystems. In R. DeFries, G. Asner, & R. Houghton (Eds.), Ecosystems and Land Use Change (pp. 85–98). Geophysical Monograph Series.

  • Houghton, R. A., Lefkowitz, D. S., & Skole, D. L. (1991). Changes in the landscape of Latin America between (1850) and 1985 I. Progressive loss of forest. Forest Ecology and Management, 38, 143–172.

    Article  Google Scholar 

  • Husin, M., Hassan, A. H. H., & Mohammed, A. T. (1986). Availability and potential utilization of oil palm trunks and fronds up to the year 2000. Kuala Lumpur, Malaysia: PORIM occasional paper 20.

    Google Scholar 

  • Ibrahim, A. (1992). Oil palms are environment friendly. Kuala Lumpur, Malaysia: New Straits Times.

    Google Scholar 

  • Inubushi, K., Furukawa, Y., Hadi, A., Purnomo, E., & Tsuruta, H. (2003). Seasonal changes of CO2, CH4 and N2O fluxes in relation to land-use change in tropical peatlands located in coastal area of South Kalimantan. Chemosphere, 52(3), 603–608.

    Article  CAS  Google Scholar 

  • IPCC, (1997). Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories—Workbook (Volume 2). J. Houghton et al., Available at: http://www.ipcc.ch, Accessed on, 12.12.2000.

  • IPCC, (2001). Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. J. T. Houghton et al., Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.

  • IPCC, (2003). Good Practice Guidance for Land Use, Land-use Change and Forestry. Intergovernmental Panel on Climate Change—IPCC/OECD/IEA/IGES, Hayama, Japan. Accessed on:05.01.2006, Available at: http://www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf.htm.

  • Jackson, R. B., Canadell, J., Ehleringer, J. R., Mooney, H. A., Sala, O. E., & Schulze, E. D. (1996). A global analysis of root distribution for terrestrial biomes. Oecologia, 108, 389–411.

    Article  Google Scholar 

  • Jauhiainen, J., Takahashi, H., Heikkinen, J. E. P., Martikainen, P. J., & Vasander, H. (2005). Carbon fluxes from a tropical peat swamp forest floor. Global Change Biology, 11(10), 1788–1797.

    Article  Google Scholar 

  • Jobbagy, E. G., & Jackson, R. B. (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10(2), 423–436.

    Article  Google Scholar 

  • Jourdan, C., & Rey, H. (1997a). Architecture and development of the oil-palm (Elaeis guineensis Jacq.) root system. Plant and Soil, 189, 33–48.

    Article  CAS  Google Scholar 

  • Jourdan, C., & Rey, H. (1997b). Modelling and simulation of the architecture and development of the oil-palm (Elaeis guineensis Jacq.) root system II. Estimation of root parameters using the RACINES postprocessor. Plant and Soil, 190, 235–246.

    Article  CAS  Google Scholar 

  • Khalid, H., Zakaria, Z. Z., & Anderson, J. M. (2000). Nutrient cycling in an oil palm plantation: The effects of residue management practicies during replanting on dry matter and nutrient uptake of young palms. Elaeis, 12(2), 29–37.

    Google Scholar 

  • Khalid, H., Zin, Z. Z., & Anderson, J. M. (1999). Quantification of oil palm biomass and nutrient value in a mature plantation. II. Below-ground biomass. Journal of Oil Palm Research, 11(2), 63–71.

    Google Scholar 

  • Khalid, H., Zin, Z. Z., & Anderson, J. M. (2000). Decomposition processes and nutrient release patterns of oil palm residues. Journal of Oil Palm Research, 12(1), 46–63.

    Google Scholar 

  • King, S. E., & Grace, J. B. (2000). The effects of gap size and disturbance type on invasion of wet pine savanna by congograss, Imperata cylindrica (Poaceae). American Journal of Botany, 87(9), 1279–1286.

    Article  Google Scholar 

  • Kyuma, K. (2003). Soil degradation in the coastal lowlands of Southeast Asia. Food and Fertilzer Technology Center, Taipei, Taiwan. Accessed on, 25.10.2005, Available at: http://www.agnet.org/library/abstract/eb537.html.

  • Laidlaw, R. K. (2000). Effects of habitat disturbance and protected areas on mammals of Peninsular Malaysia. Conservation Biology, 14(6), 1639–1648.

    Article  Google Scholar 

  • Lasco, R. D. (2002). Forest carbon budgets in Southeast Asia following harvesting and land cover change. Science in China Series C-Life Sciences, 45, 55–64.

    Google Scholar 

  • Lasco, R. D., Lales, J. S., Arnuevo, M. T., Guillermo, I. Q., Jesus, A. C. D., Medrano, R., et al. (2000). Carbon dioxide (CO2) storage and sequestration in the Leyte Geothermal Reservation, Philippines, World Geothermal Congress, Kyushu-Tohoku, Japan, pp. 639–644.

  • Laurance, W. F., Laurance, S. G., & Delamonica, P. (1998). Tropical forest fragmentation and greenhouse gas emissions. Forest Ecology and Management, 110, 173–180.

    Article  Google Scholar 

  • Levine, J. S., Bobbe, T., Ray, N., Singh, A., & Witt, R. G. (1999). Wildland fires and the environment: A global synthesis. UNEP, UNEP/DEIAEW/TR.99-1, 46 pp.

  • MacKinnon, K., Hatta G., Halim H., & Mangalik A. (1996). The ecology of Kalimantan, The Ecology of Indonesia Series Volume III. Periplus Editions (HK) Ltd.

  • Maene, L. M., Thong, K. C., Ong, T. S., & Mokhtaruddin, A. M. (1979). Surface wash under mature oil palm. In E. Pushparajah (Ed.), Proceedings of Symposium on Water in Malaysian Agriculture (pp. 203–216). Kuala Lumpur, Malaysia: Malaysian Society of Soil Science.

  • Magcale-Macandog, D. B. (2002). Soil erosion and sustainability of different land uses of smallholder Imperata grasslands in SEA. In J. Juren, W. Lianxiang, W. Deyi, T. Xiaoning, & N. Jing (Eds.), 12th International Soil Conservation Organization (ISCO) Conference: Sustainable utilization of global soil and water resources (pp. 306–312). Beijing, People’s Republic of China: Tsinghua University Press.

  • Melling, L., Hatano, R., & Goh, K. J. (2005a). Methane fluxes from three ecosystems in tropical peatland of Sarawak, Malaysia. Soil Biology & Biochemistry, 37(8), 1445–1453.

    Article  CAS  Google Scholar 

  • Melling, L., Hatano, R., & Goh, K. J. (2005b). Soil CO2 flux from three ecosystems in tropical peatland of Sarawak, Malaysia. Tellus Series B-Chemical and Physical Meteorology, 57(1), 1–11.

    Article  Google Scholar 

  • Mistry, J. (2000). Savannas. Progress in Physical Geography, 24(4), 601–608.

    Google Scholar 

  • Moreira, A. G. (2000). Effects of fire protection on savanna structure in Central Brazil. Journal of Biogeography, 27, 1021–1029.

    Article  Google Scholar 

  • Muraleedharan, T. R., Radojevic, M., Waugh, A., & Caruana, A. (2000). Emissions from the combustion of peat: An experimental study. Atmospheric Environment, 34(18):3033–3035.

    Article  CAS  Google Scholar 

  • Murayama, S., & Bakar, Z. A. (1996a). Decomposition of tropical peat soils. 1. Decomposition kinetics of organic matter in peat soils. Japan Agricultural Research Quarterly, 30, 145–151.

    Google Scholar 

  • Murayama, S., & Bakar, Z. A. (1996b). Decomposition of tropical peat soils. 2. Estimation of in situ decomposition by measurement of CO2 flux. Japan Agricultural Research Quarterly, 30, 153–158.

    Google Scholar 

  • Murty, D., Kirschbaum, M. U. F., McMurtrie, R. E., & McGilvray, A. (2002). Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature. Global Change Biology, 8(2), 105–123.

    Article  Google Scholar 

  • Mutert, E., Fairhurst, T. H., & von Uexküll, H. R. (1999). Agronomic management of oil palms on deep peat. Better Crops International, 13(1), 22–27.

    Google Scholar 

  • Mutuo, P. K., Cadisch, G., Albrecht, A., Palm, C. A., & Verchot, L. (2005). Potential of agroforestry for carbon sequestration and mitigation of greenhouse gas emissions from soils in the tropics. Nutrient Cycling in Agroecosystems, 71(1), 43–54.

    Article  CAS  Google Scholar 

  • NRI (1996). Imperata management for smallholders: An extensionist’s guide to rational Imperata management for smallholders. Indonesian Rubber Research Institute, Sembawa, Indonesia and Natural Resources Institute, Chatham, UK.

  • Otsamo, A. (2001). Forest plantations on Imperata grasslands in Indonesia—Establishment, silviculture and utilization potential, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, 85 pp.

  • Palm, C. A., Woomer, P. L., Alegre, J., Arevalo, L., Castilla, C., Cordeiro, D. G., et al. (2000). Carbon sequestration and trace gas emissions in slash-and-burn and alternative land-uses in the humid tropics. C. Palm, Final report, Phase II (Reprint), ASB Climate Change Working Group, Nairobi, Kenya.

  • Parrotta, J. A. (1992). The role of plantation forests in rehabilitating degraded tropical ecosystems. Agriculture, Ecology and Ecosystems 41, 115–133.

    Article  Google Scholar 

  • Patzek, T. W., Pimentel, D. (2005). Thermodynamics of energy production from biomass. Critical Reviews in Plant Sciences, 24(5–6), 327–364.

    Article  CAS  Google Scholar 

  • Phillips, O. L., Malhi, Y., Higuchi, N., Laurance, W. F., Nunez, P. V., Vasquez, R. M., et al. (1998). Changes in the carbon balance of tropical forests: Evidence from long-term plots. Science, 282(5388):439–442.

    Article  CAS  Google Scholar 

  • PointCarbon (2006). Accessed on, 20.04.2006, Available at: http://www.pointcarbon.com.

  • Proctor, J., Anderson, J. M., Chai, P., & Vallack, H. W. (1983). Ecological studies in four contrasting lowland rainforests in Gunung Mulu National Park, Sarawak. I. Forest environment, structure and floristics. Journal of Ecology, 71, 237–260.

    Google Scholar 

  • Proctor, J., Anderson, J. M., Fogden, S. C. L., & Vallack, H. W. (1983). Ecological studies in four contrasting lowland rainforests in Gunung Mulu National Park, Sarawak. II. Litterfall, litter standing crop and preliminary observations on herbivory. Journal of Ecology, 71, 261–283.

    Article  Google Scholar 

  • Robertson, J. M. Y., & Schaik, C. P. V. (2001). Causal factors underlying the dramatic decline of the Sumatran orang-utan. Oryx, 35, 26–38.

    Article  Google Scholar 

  • Roshetko, J. M., Delaney, M., Hairiah, K., & Purnomosidhi, P. (2002). Carbon stocks in Indonesian homegarden systems: Can smallholder systems be targeted for increased carbon storage? American Journal of Alternative Agriculture, 17(2), 1–11.

    Article  Google Scholar 

  • Ross, M. (1999). Auswirkungen verschiedener Rodeverfahren und des Unterbewuchses auf Bodenfruchtbarkeit, Bodenwasserhaushalt, Erosion, und Bestandsentwicklung eines Ölpalmenbestandes. Aachen, Germany: Shaker Verlag.

    Google Scholar 

  • Rowell, A., & Moore, P. F. (2000). Global review of forest fires. WWF/IUCN.

  • Sanchez, P. A. (2000). Linking climate change research with food security and poverty reduction in the tropics. Agriculture, Ecosystems and Environment, 82, 371–383.

    Article  Google Scholar 

  • Sanford, J. R. L., & Cuevas, E. (1996). Root growth and rhizosphere interactions in tropical forests. In S. S. Mulkey, R. L. Chazdon, & A. P. Smith (Eds.), Tropical forest plant ecophysiology (pp. 268–300). New York, USA: Chapman and Hall.

  • Scholes, R. J., & Hall D. O. (1996). The carbon budget of tropical savannas, woodlands and grasslands. In A. I. Breymeyer, D. O. Hall, J. M. Melillo, & G. I. Agren (Eds.), Global change: Effects on coniferous forests and grasslands (pp. 69–100). Chichester, UK: Wiley.

  • Shimada, S., Takahashi, H., Haraguchi, A., & Kaneko, M. (2001). The carbon content characteristics of tropical peats in Central Kalimantan, Indonesia: Estimating their spatial variability in density. Biogeochemistry, 53(3), 249–267.

    Article  CAS  Google Scholar 

  • Sombroek, W. G., Nachtergaele, F. O., & Hebel, A. (1993). Amounts, dynamics and sequestering of carbon in tropical and subtropical soils. Ambio, 22, 417–426.

    Google Scholar 

  • Syahrinudin (2005). The potential of oil palm and forest plantations for carbon sequestration on degraded land in Indonesia. P. L. G. Vlek, M. Denich, C. Martius, C. Rodgers and N.V.D. Giesen, Ecology and Development Series, 28. Cuvillier Verlag, Göttingen, Germany.

  • Terry, R. E., Tate, R. L., & Duxbury, J. M. (1981). The effect of flooding on nitrous oxide emissions from an organic soil. Soil Science, 132, 228–232.

    Article  CAS  Google Scholar 

  • Thenkabail, P. S., Stucky, N., Griscom, B. W., Ashton, M. S., Diels, J., Meer, B. V. D., et al. (2004). Biomass estimations and carbon Stock calculations in the oil palm plantations of African derived savannas using IKONOS data. International Journal of Remote Sensing, 25, 1–27.

    Google Scholar 

  • van der Werf, G. R., Randerson, J. T., Collatz, J., & Giglio, L. (2003). Carbon emissions from fires in tropical and subtropical ecosystems. Global Change Biology, 9(4), 547–562.

    Article  Google Scholar 

  • Vitousek, P. M., & Sanford R. L. (1986). Nutrient cycling in moist tropical forests. Annual Review of Ecology and Systematics, 17, 137–168.

    Article  Google Scholar 

  • von Uexküll, H. R., & Mutert, E. M. (1994). Rehabilitation and lasting improvement of degraded land in Indonesia. In Giessener Beiträge zur Entwicklungsforschung. Reihe 1 (Symposien) Band 21. Wissenschaftliches Zentrum Tropeninstitut, Giessen, Germany, pp. 47–65.

  • Wakker, E. (1999). Forest fires and the expansion of Indonesia’s oil-palm plantations. WWF Indonesia, Jakarta, 25 pp.

  • Wesseling, I., Uychiaoco, A. J., Alino, P. M., Aurin, T., & Vermaat, J. E. (1999). Damage and recovery of four Philippine corals from short-term sediment burial. Marine Ecology-Progress Series, 176, 11–15.

    Article  Google Scholar 

  • Whitmore, T. C. (1984). Tropical rain forest of the Far East. Oxford, UK: Clarendon Press.

    Google Scholar 

  • Whitmore, T. C. (1990). An introduction to tropical rain forests. Oxford, UK: Clarendon Press.

    Google Scholar 

  • Wibowo, A., Suharti, M., Sagala, A. P. S., Hibani, H., & van Noordwijk, M. (1997). Fire management on Imperata grasslands as part of agroforestry development in Indonesia. In D. P. Garrity (Ed.), Agroforestry innovations for Imperata grassland rehabilitation. Agroforestry Systems (pp. 203–217). Dordrecht: Kluwer Academic Publishers.

  • Wösten, J. H. M., Ismail, A. B., & Wijk, V. A. L. M. (1997). Peat subsidence and its practical implications: A case study in Malaysia. Geoderma, 78, 25–36.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Germer.

Additional information

Readers should send their comments on this paper to BhaskarNath@aol.com within 3 months of publication of this issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Germer, J., Sauerborn, J. Estimation of the impact of oil palm plantation establishment on greenhouse gas balance. Environ Dev Sustain 10, 697–716 (2008). https://doi.org/10.1007/s10668-006-9080-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-006-9080-1

Keywords

Navigation