Skip to main content

Advertisement

Log in

Environmental dimension of innovation: time series evidence from Turkey

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

The study aims to investigate whether domestic innovation reduces environmental degradation in Turkey. Since the empirical literature on this subject is relatively poor and there is no empirical evidence for the Turkish case, the study attempts to bring a new perspective to the existing literature. To do this, the study estimates the relationship between innovation and CO2 emissions over the period of 1971–2013, via the ARDL bounds test and threshold cointegration test. Empirical results obtained from the ARDL approach indicates that the relationship between CO2 emission level and number of domestic patents depicts an inverted U-shape curve for Turkey. Moreover, estimation results show that urbanization, income level and financial development have positive effects on CO2 emissions, while alternative energy sources and human capital negatively affect the emission level. Since the linear econometric methods may yield inconsistent and biased results in the presence of a nonlinear relationship, the threshold cointegration method is employed as a robustness check. The findings obtained from threshold cointegration confirm the existence of a nonlinear relationship between CO2 emissions and domestic innovation. This suggests that for early stages of economic development, increases in domestic innovation raise the CO2 emission level in Turkey, but after achieving a certain development level, increases in domestic innovation lead to decreases in CO2 emissions. Thus, either developing or developed countries can eventually reduce CO2 emission levels by concentrating on innovation. Policy makers and institutions dealing with environmental issues should certainly pay attention to innovation and technological progress to assure a sustainable growth path.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1.  Since \(A = 1/\mu\) where \(\mu = f\left( {P,\text{CE},X_{j} } \right)\), the CO2 production function can be written as \({\text{CO}}_2 = \frac{{Y^{\alpha } L^{\beta } U^{\gamma } }}{\mu }\) where all the factors determining the µ function are expected to be positive.

References

  • Aghion, P., & Howitt, P. (1992). A model of growth through creative destruction. Econometrica,60(2), 323–351.

    Article  Google Scholar 

  • Agras, J., & Chapman, D. (1999). A dynamic approach to the Environmental Kuznets Curve hypothesis. Ecological Economics,28(2), 267–277. https://doi.org/10.1016/S0921-8009(98)00040-8.

    Article  Google Scholar 

  • Andrews, D. W. K. (1993). Tests for parameter instability and structural change with unknown change point. Econometrica,61, 821–856.

    Article  Google Scholar 

  • Andrews, D. W. K., & Ploberger, W. (1994). Optimal tests when a nuisance parameter is present only under the alternative. Econometrica,62, 1383–1414. https://doi.org/10.2307/2951753.

    Article  Google Scholar 

  • Arrow, K. J. (1962). The economic implications of learning by doing. Review of Economic Studies,29, 155–173.

    Article  Google Scholar 

  • Baek, J., & Gweisah, G. (2011). Does income inequality harm the environment? Empirical evidence from the United States. Energy Policy,62, 1434–1437. https://doi.org/10.1016/j.enpol.2013.07.097.

    Article  Google Scholar 

  • Baek, J., & Kim, H. S. (2013). Is economic growth good or bad for the environment? Empirical Evidence from Korea, Energy Economics,36, 744–749. https://doi.org/10.1016/j.eneco.2012.11.020.

    Article  Google Scholar 

  • Balke, N. S., & Fomby, T. B. (1997). Threshold cointegration. International Economic Review,38, 627–645. https://doi.org/10.2307/2527284.

    Article  Google Scholar 

  • Beckerman, W. (1992). Economic growth and the environment: whose growth? Whose environment? World Development,20, 481–496. https://doi.org/10.1016/0305-750X(92)90038-W.

    Article  Google Scholar 

  • Beghin, J., & Poitier, M. (1997). Effects of trade liberalization on the environment in the manufacturing sector. The World Economy,20(4), 337–347.

    Article  Google Scholar 

  • Bhagawati, J. (1993). The case for free trade. Scientific American, 42–49. https://doi.org/10.1038/scientificamerican1193-42.

  • Chevallier, J. (2011). Evaluating the carbon-macroeconomy relationship: Evidence from threshold vector error-correction and Markov-switching VAR models. Economic Modelling,28(6), 2634–2656. https://doi.org/10.1016/j.econmod.2011.08.003.

    Article  Google Scholar 

  • Dasgupta, S., Laplante, B., Wang, H., & Wheeler, D. (2002). Confronting the Environmental Kuznets Curve. Journal of Economic Perspectives,16(1), 147–168. https://doi.org/10.1257/0895330027157.

    Article  Google Scholar 

  • Davies, R. B. (1987). Hypothesis testing when a nuisance parameter is present only under the alternative. Biometrika,74, 33–43.

    Google Scholar 

  • DeLong, J.B. (1998). Estimates of world GDP, one million BC–Present. Working Paper, UC Berkeley.

  • Dinda, S. (2004). Environmental Kuznets curve hypothesis: A survey. Ecological Economics,49(4), 431–455. https://doi.org/10.1016/j.ecolecon.2004.02.011.

    Article  Google Scholar 

  • Engle, R. F., & Granger, C. W. J. (1987). Co-integration and error correction: Representation, estimation, and testing. Econometrica,55, 251–276.

    Article  Google Scholar 

  • Esteve, V., & Tamarit, C. (2012). Threshold cointegration and nonlinear adjustment between CO 2 and income: The Environmental Kuznets Curve in Spain, 1857–2007. Energy Economics,34(6), 2148–2156.

    Article  Google Scholar 

  • Feenstra, R.C., Robert I., & Marcel P.T. (2015). The next generation of the Penn World Table. American Economic Review, 105(10), 3150–3182. Available for download at www.ggdc.net/pwt.

  • Fernández, Y. F., López, M. F., & Blanco, B. O. (2018). Innovation for sustainability: The impact of R&D spending on CO2 emissions. Journal of Cleaner Production,172, 3459–3467.

    Article  Google Scholar 

  • Grossman, G. H., & Helpman, E. (1991). Innovation and growth in the global economy. Cambridge: MIT Press.

    Google Scholar 

  • Grossman, G.M., & Krueger, A.B. (1991). Environmental impacts of the North American Free Trade Agreement. NBER. Working paper 3914.

  • Hansen, B. E., & Seo, B. (2002). Testing for two-regime threshold cointegration in vector error-correction models. Journal of econometrics,110(2), 293–318. https://doi.org/10.1016/S0304-4076(02)00097-0.

    Article  Google Scholar 

  • Iwata, H., Okada, K., & Samreth, S. (2010). Empirical study on the Environmental Kuznets Curve for CO2 in France: The role of nuclear energy. Energy Policy,38, 4057–4063. https://doi.org/10.1016/j.enpol.2010.03.031.

    Article  Google Scholar 

  • Johansen, S. (1988). Statistical analysis of cointegration vectors. Journal of Economic Dynamics and Control,12(2–3), 231–254. https://doi.org/10.1016/0165-1889(88)90041-3.

    Article  Google Scholar 

  • Johansen, S., & Juselius, K. (1990). Maximum likelihood estimation and inference on cointegration—With applications to the demand of money. Oxford Bulletin of Economics and Statistics,52(2), 169–210. https://doi.org/10.1111/j.1468-0084.1990.mp52002003.x.

    Article  Google Scholar 

  • Kim, H. S., & Baek, J. (2011). The environmental consequences of economic growth revisited. Economics Bulletin,31, 1198–1211.

    Google Scholar 

  • Komen, R., Gerking, S., & Folmer, H. (1997). Income and environmental R&D: Empirical evidence from OECD countries. Environment and Development Economics,2, 505–515.

    Article  Google Scholar 

  • Kuznets, S. (1955). Economic growth and income inequality. American Economic Review,49, 1–28.

    Google Scholar 

  • Lopez, R., & Mitra, S. (2000). Corruption, pollution, and the Kuznets Environment Curve. Journal of Environmental Economics and Management,40(2), 137–150.

    Article  Google Scholar 

  • Lucas, R. E. Jr., (1988). On the mechanics of economic development. Journal of Monetary Economics, 22, 3–42. https://doi.org/10.1016/0304-3932(88)90168-7.

    Article  Google Scholar 

  • Martin, P., & Wheeler, D. (1992). Price, policies and the international diffusion of clean technology: The case of wood pulp production. In P. Low (Ed.), International trade and the environment (pp. 197–224). Washington: World Bank.

    Google Scholar 

  • Panopoulou, E., & Pittis, N. (2004). A composition of autoregressive distributed lag and dynamic OLS cointegration estimators in the case of serially correlated cointegration error. Econometrics,7, 585–617.

    Article  Google Scholar 

  • Pesaran, M. H., & Shin, Y. (1999). An autoregressive distributed lag modelling approach to cointegration analysis. In S. Strom (Ed.), Econometrics and economic theory in the 20th century: The Ragnar Frisch centennial symposium (pp. 371–413). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Pesaran, M. H., Shin, Y., & Smith, R. J. (2001). Bounds testing approaches to the analysis of level relationships. Journal of Applied Econometrics,16, 289–326. https://doi.org/10.1002/jae.616.

    Article  Google Scholar 

  • Rafindadi, A. A. (2014). Econometric prediction on the effects of financial development and trade openness on the German energy consumption: A startling revelation from the data set. International Journal of Energy Economics and Policy,5(1), 182–196.

    Google Scholar 

  • Rafindadi, A. A. (2016). Does the need for economic growth influence energy consumption and CO2 emissions in Nigeria? Evidence from the innovation accounting test. Renewable and Sustainable Energy Reviews,62, 1209–1225.

    Article  Google Scholar 

  • Rafindadi, A. A., & Ozturk, I. (2016). Effects of financial development, economic growth and trade on electricity consumption: Evidence from post-Fukushima Japan. Renewable and Sustainable Energy Reviews,54, 1073–1084.

    Article  Google Scholar 

  • Rafindadi, A. A., & Ozturk, I. (2017). Dynamic effects of financial development, trade openness and economic growth on energy consumption: Evidence from South Africa. International Journal of Energy Economics and Policy, 7(3), 74–85.

    Google Scholar 

  • Rebelo, S. (1991). Long-run policy analysis and long-run growth. Journal of Political Economy,99(3), 500–521.

    Article  Google Scholar 

  • Romer, P. M. (1986). Increasing returns and long-run growth. Journal of Political Economy,94(5), 1002–1037. https://doi.org/10.1086/261420.

    Article  Google Scholar 

  • Romer, P. M. (1990). Endogenous technological change. Journal of political Economy,98(5, Part 2), S71–S102.

    Article  Google Scholar 

  • Samargandi, N. (2017). Sector value addition, technology and CO2 emissions in Saudi Arabia. Renewable and Sustainable Energy Reviews,78, 868–877.

    Article  Google Scholar 

  • Santra, S. (2017). The effect of technological innovation on production-based energy and CO2 emission productivity: Evidence from BRICS countries. African Journal of Science, Technology, Innovation and Development,9(5), 503–512.

    Article  Google Scholar 

  • Sarkodie, S. A., & Adams, S. (2018). Renewable energy, nuclear energy, and environmental pollution: Accounting for political institutional quality in South Africa. Science of the Total Environment,643, 1590–1601.

    Article  CAS  Google Scholar 

  • Sarkodie, S. A., & Strezov, V. (2019). Effect of foreign direct investments, economic development and energy consumption on greenhouse gas emissions in developing countries. Science of the Total Environment,646, 862–871.

    Article  CAS  Google Scholar 

  • Selden, T., & Song, D. (1994). Environmental quality and development: is there a Kuznets Curve for air pollution emissions? Journal of Environmental Economics and management,27, 147–162.

    Article  Google Scholar 

  • Shahbaz, M., Nasir, M. A., & Roubaud, D. (2018). Environmental degradation in France: The effects of FDI, financial development, and energy innovations. Energy Economics,74, 843–857.

    Article  Google Scholar 

  • Uzawa, H. (1965). Optimum technical change in an aggregative model of economic growth. International economic review,6(1), 18–31.

    Article  Google Scholar 

  • Vukina, T., Beghin, J. C., & Solakoglu, E. G. (1999). Transition to markets and the environment: Effects of the change in the composition of manufacturing output. Environment and Development Economics,4(4), 582–598. https://doi.org/10.1017/S1355770X99000340.

    Article  Google Scholar 

  • Wang, S., Li, G., & Fang, C. (2018). Urbanization, economic growth, energy consumption, and CO2 emissions: Empirical evidence from countries with different income levels. Renewable and Sustainable Energy Reviews,81, 2144–2159.

    Article  Google Scholar 

  • Xiaoli, H., & Chatterjee, L. (1997). Impact of growth and structural change on CO2 emissions of developing countries. World Development,25(3), 395–407.

    Article  Google Scholar 

  • Yii, K. J., & Geetha, C. (2017). The nexus between technology innovation and CO2 emissions in Malaysia: Evidence from granger causality test. Energy Procedia,105, 3118–3124.

    Article  Google Scholar 

  • Zivot, E., & Andrews, D. W. K. (2002). Further evidence on the great crash, the oil-price shock, and the unit-root hypothesis. Journal of Business & Economic Statistics,20(1), 25–44.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caner Demir.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demir, C., Cergibozan, R. & Ari, A. Environmental dimension of innovation: time series evidence from Turkey. Environ Dev Sustain 22, 2497–2516 (2020). https://doi.org/10.1007/s10668-018-00305-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-018-00305-0

Keywords

JEL Classifications

Navigation