Skip to main content
Log in

A new activated carbon prepared from cypress cones and its application in the COD reduction and colour removal from industrial textile effluent

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

A new activated carbon from local cypress cones (CCAC) was prepared using phosphoric acid as a chemical activating agent. It presented a Brunauer, Emmett and Teller surface area (SBET) equal to 379.5117 ± 2.3509 m2 g−1 with an amorphous nature. Scanning electron microscopy analysis revealed a heterogeneous and random shape of pores. The reduction in colour and chemical oxygen demand (COD) from the industrial aqueous effluent from the textile company “COTITEX” was the principal performance study of the resulting material. The kinetic data of the adsorption process obeyed a pseudo-second-order model with R2 of 0.988. From five studied parameters, only the initial COD concentration, the pH and the temperature influenced the COD reduction at equilibrium. Maximum COD and colour removal, respectively, 19% and 80.4% were recorded under optimal adsorption conditions of 2 g L−1 of the adsorbent amount, 323°K of operating temperature, pH = 11 and a stirring speed = 300 rpm. The present study showed that CCAC could be a proper material for coloured effluent treatment, whereas, for a better COD reduction, pretreatment is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Avinash, A. K., Kadama, H. S. L., Lee, D. S., & Govindwar, P. S. (2015). Zinc chloride as a coagulant for textile dyes and treatment of generated dye sludge under the solid state fermentation: Hybrid treatment strategy. Bioresource Technology, 2176, 38–46.

    Google Scholar 

  • Ayers, R. S., & Westcot, D. W. (1985). Water quality for agriculture. Rome: Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • Azimi, S. C., Shirini, F., & Pendashteh, A. (2019). Evaluation of COD and turbidity removal from woodchips wastewater using biologically sequenced batch reactor. Process Safety and Environmental Protection, 128, 211–227.

    Article  Google Scholar 

  • Babic, B. M., Milonjic, S. K., Polovina, M. J., & Kaludierovic, B. V. (1999). Point of zero charge and intrinsic equilibrium constants of activated carbon cloth. Carbon, 37, 477–481.

    Article  CAS  Google Scholar 

  • Belhamdi, B., Zoulikha, M., Hamza, L., & Mohamed, T. (2019). The removal and adsorption mechanisms of free amino acid l-tryptophan from aqueous solution by biomass-based activated carbon by H3PO4 activation: Regeneration study. Physics and Chemistry of the Earth, Parts A/B/C (in press)

  • Chen, J. J., Wang, X. L., Liu, X. Y., Huang, J. G., & Xie, Z. M. (2015). Removal of dye wastewater COD by sludge base carbon. Journal of Coastal Research, 73, 1–3.

    Article  Google Scholar 

  • Daud, N. K., Akpan, U. G., & Hameed, B. H. (2012). Decolorization of Sunzol Black DN conc. in aqueous solution by Fenton oxidation process: Effect of system parameters and kinetic study. Desalin Water Treat, 37, 1–7.

    Article  CAS  Google Scholar 

  • De Souza, M. T. F., De Almeida, C. A., & Ambrosio, E. (2016). Extraction and use of Cereus peruvianus cactus mucilage in the treatment of textile effluents. Journal of the Taiwan Institute of Chemical Engineers, 67, 174–183.

    Article  Google Scholar 

  • Ellouze, E., Ellouze, D., Jrad, A., & Ben Amar, R. (2011). Treatment of synthetic textile wastewater by combined chemical coagulation/membrane processes. Desalination and Water Treatment, 33, 118–124.

    Article  CAS  Google Scholar 

  • Fernandez, M. E., Nunell, G. V., Bonelli, P. R., & Cukierman, A. L. (2010). Effectiveness of Cupressus sempervirens cones as biosorbent for the removal of basic dyes from aqueous solutions in batch and dynamic modes. Bioresource Technology, 101, 9500–9507.

    Article  CAS  Google Scholar 

  • Fukahori, S., Fujiwara, T., Ito, R., & Funamizu, N. (2011). pH-Dependent adsorption of sulfa drugs on high silica zeolite: Modeling and kinetic study. Desalination, 275, 237–242.

    Article  CAS  Google Scholar 

  • Galán, J., Rodríguez, A., Gómez, J. M., Allen, S. J., & Walker, G. M. (2013). Reactive dye adsorption onto a novel mesoporous carbon. Chemical Engineering Journal, 219, 62–68.

    Article  Google Scholar 

  • Harrelkas, F., Azizi, A., Yaacoubi, A., Benhammou, A., & Pons, M. N. (2009). Treatment of textile dye effluents using coagulation-flocculation coupled with membrane processes or adsorption on powdered activated carbon. Desalination, 235, 330–339.

    Article  CAS  Google Scholar 

  • Hayat, H., Mahmood, Q., Pervez, A., Bhatti, Z. A., & Baig, S. A. (2015). Comparative decolorization of dyes in textile wastewater using biological and chemical treatment. Separation and Purification Technology, 154, 149–153.

    Article  CAS  Google Scholar 

  • Hejazifar, M., & Azizian, S. (2012). Adsorption of cationic and anionic dyes onto the activated carbon prepared from Grapevine Rhytidome. Journal of Dispersion Science and Technology, 33, 846–853.

    Article  CAS  Google Scholar 

  • Holkar, C. R., Jadhav, A. J., Pinjari, D. V., Mahamuni, N. M., & Pandit, A. B. (2016). A critical review on textile wastewater treatments: Possible approaches. Journal of Environmental Management, 182, 351–366.

    Article  CAS  Google Scholar 

  • Karthikeyan, S., Titus, A., Gnanamani, A., Mandal, A. B., & Sekaran, G. (2011). Treatment of textile wastewater by homogeneous and heterogeneous Fenton oxidation processes. Desalination, 281, 438–445.

    Article  CAS  Google Scholar 

  • Kebedea, T. G., Dube, Simiso, Mengistie, Alemayehu Abebaw, Nkambule, Thabo T. I., & Nindi, Mathew Muzi. (2018). Moringa stenopetala bark: A novel green adsorbent for the removal of metal ions from industrial effluents. Physics and Chemistry of the Earth, 107, 45–57.

    Article  Google Scholar 

  • Khellouf, M., Chemini, R., Salem, Z., Khodja, M., & Zeriri, D. (2019). Optimization of preparation and application of activated carbon derived from cypress cones. Algerian Journal of Environmental Science and Technology, 5(1), 841–851.

    CAS  Google Scholar 

  • Liu, X. H., Dong, W., Zhang, L. L., Kong, Q., & Wang, W. L. (2017). Efficient adsorption of sulfamethazine onto modified activated carbon: A plausible adsorption mechanism. Nature Scientific Reports, 7, 1–12.

    Article  Google Scholar 

  • Mahmoodi, N. M. (2015). Surface modification of magnetic nanoparticle and dye removal from ternary systems. Journal of Industrial and Engineering Chemistry, 27, 251–259.

    Article  CAS  Google Scholar 

  • Manera, C., Andrezza, P. T., Perondi, Daniele, & Marcelo, G. (2018). Adsorption of leather dyes on activated carbon from leather shaving wastes: Kinetics, equilibrium and thermodynamics studies. Journal Environmental Technology, 40, 2756–2768.

    Article  Google Scholar 

  • Mansour, H. B., Houas, I., Montassar, F., Ghedira, K., Barillier, D., Mosrati, R., et al. (2012). Alteration of in vitro and acute in vivo toxicity of textile dyeing wastewater after chemical and biological remediation. Environmental Science and Pollution Research, 19, 2634–2643.

    Article  Google Scholar 

  • Mor, S., Chhavi, M. K., Sushil, K. K., et al. (2018). Assessment of hydrothermally modified fly ash for the treatment of methylene blue dye in the textile industry wastewater. Environment, Development and Sustainability, 20, 625–639.

    Article  Google Scholar 

  • Naresh Yadav, D., Anand Kishore, K., Bethi, B., et al. (2018). ZnO nanophotocatalysts coupled with ceramic membrane method for treatment of Rhodamine-B dye waste water. Environment, Development and Sustainability, 20, 2065–2078.

    Article  Google Scholar 

  • Nigam, P., Amour, G., Banat, I. M., Singh, D., Marchant, R., McHale, A. P., et al. (2000). Physical removal of textile dyes from effluents and solid-state fermentation of dye-adsorbed agricultural residues. Bioresource Technology, 72, 219–226.

    Article  CAS  Google Scholar 

  • Pelaez-Cid, A. A., Herrera-Gonzalez, A. M., Salazar-Villanueva, M., & Bautista-Hernandez, A. (2016). Elimination of textile dyes using activated carbons prepared from vegetable residues and their characterization. Journal of Environmental Management, 181, 269–278.

    Article  CAS  Google Scholar 

  • Prahas, D., Kartika, Y., Indraswati, N., & Ismadji, S. (2008). Activated carbon from jackfruit peel waste by H3PO4 chemical activation: Pore structure and surface chemistry characterization. Chemical Engineering Journal, 140, 32–42.

    Article  CAS  Google Scholar 

  • Şahinkaya, S. (2013). COD and color removal from synthetic textile wastewater by ultrasound assisted electro-Fenton oxidation process. Journal of Industrial and Engineering Chemistry, 19, 601–605.

    Article  Google Scholar 

  • Saleh, T. A. (2015). Isotherm, kinetic and thermodynamic studies on Hg(II) adsorption from aqueous solution by silica-multiwall carbon nanotubes. Environmental Science and Pollution Research International, 22(21), 16721–16731.

    Article  CAS  Google Scholar 

  • Sathishkumar, P., Arulkumar, M., & Palvannan, M. T. (2012). Utilization of agro-industrial waste Jatropha curcas pods as an activated carbon for the adsorption of reactive dye Remazol Brilliant Blue R (RBBR). Journal of Cleaner Production, 22, 67–75.

    Article  CAS  Google Scholar 

  • Saygili, H., Guzel, F., & Onal, Y. (2015). Conversion of grape industrial processing waste to activated carbon sorbent and its performance in cationic and anionic dyes adsorption. Journal of Cleaner Production, 93, 84–93.

    Article  CAS  Google Scholar 

  • Sharma, A., Sharma, G., Naushad, M., Ghfar, A. A., & Pathania, D. (2017). Remediation of anionic dye from aqueous system using bio-adsorbent prepared by microwave activation. Environmental Technology. https://doi.org/10.1080/09593330.2017.1317293.

    Article  Google Scholar 

  • Sing, K. S. W., Everett, D. H., Haul, R., Moscou, L., Pierotti, R. A., RouqueroL, J., et al. (1985). Reporting Physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry, 57, 603–619.

    Article  CAS  Google Scholar 

  • Streicher, J., Ruhl, A. S., Gnirß, R., & Jekel, M. (2016). Where to dose powdered activated carbon 710 in a wastewater treatment plant for organic micro-pollutant removal. Chemosphere, 711(156), 88–94.

    Article  Google Scholar 

  • Subramonian, W., & Wu, T. Y. (2014). Effect of enhancers and inhibitors on photocatalytic sunlight treatment of methylene blue. Water, Air, & Soil Pollution, 225, 1–15.

    Article  CAS  Google Scholar 

  • Teixeira, V. G., Coutinho, F. M. B., & Gomes, A. S. (2001). The most important methods for the characterization of porosity of styrene-divinylbenzene based resins. Quimica Nova, 24, 808–818.

    Article  Google Scholar 

  • Volmajer, J., Majcen Le Marechal, A., Križanec, B., & Vajnhandl, S. (2012). The applicability of an advanced oxidation process for textile finishing waste streams & fate of persistent organic pollutants. International Journal of Environmental Resources, 6(4), 863–874.

    Google Scholar 

  • Wang, W. L., Liu, Y., Liu, X. H., Deng, B. J., Lu, S. Y., Zhang, Y. R., et al. (2018). Equilibrium adsorption study of the adsorptive removal of Cd2 + and Cr6 + using activated carbon. Environmental Science and Pollution Research International, 25, 25538–25550.

    Article  CAS  Google Scholar 

  • Waring, D. R., & Hallas, G. (2013). The chemistry and application of dyes. Berlin: Springer.

    Google Scholar 

  • Wawrzkiewicz, M., Wiśniewska, M., & Gun’ko, V. M. (2015). Adsorptive removal of acid, reactive and direct dyes from aqueous solutions and wastewater using mixed silica-alumina oxide. Powder Technology, 278, 306–315.

    Article  CAS  Google Scholar 

  • Zhao, X. T., Zeng, T., Li, X. Y., Hu, Z. J., Gao, H. W., & Xie, Z. (2012). Modeling and mechanism of the adsorption of copper ion onto natural bamboo sawdust. Carbohydrate Polymers, 89, 185–192.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Nabila SAIDI and Amina MOURAYA form URDD Sonatrach, for technical assistance in characterization analysis. The authors would like to thank Cyril VAULOT from IS2M, for the N2 adsorption–desorption experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meryem Khellouf.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khellouf, M., Chemini, R., Salem, Z. et al. A new activated carbon prepared from cypress cones and its application in the COD reduction and colour removal from industrial textile effluent. Environ Dev Sustain 23, 7756–7771 (2021). https://doi.org/10.1007/s10668-020-00944-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-020-00944-2

Keywords

Navigation