Skip to main content
Log in

Bioremediation of heavy metals from wastewater using nanomaterials

  • Review
  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

One of the key reasons for water pollution is the existence of heavy metals in wastewater. Industrial wastewater and domestic sewage are one of the top reasons to cause water pollution. Increasing water pollution is a major concern for humans as it is not only affecting our health but also disturbing the economy and sustainable growth all around the world. Heavy metals affect human health as well as flora and fauna of the region because they are non-biodegradable. Heavy metals induce mutagenesis, cancer, and hereditary genetic disorders because they bind to the same sites in which essential metal ions bind and lead to the destabilization of structures and biomolecules. Conventional methods are well-established for the removal of heavy metals, but they have several drawbacks. Therefore, there is a requirement of alternative methods that can efficiently remove heavy metals. Nanoparticles hold immense potential, and they are used as adsorbents for heavy metal removal. Due to its unique properties like high selectivity and adsorption capacity, they are effective sorbents and extensively used for heavy metal removal from wastewater. This review addresses the significant issue of global wastewater crisis. Various methods of heavy metal remediation (HMR) and wastewater treatment are discussed including the application of microbes, plants, and nanoparticles in HMR. This review also highlights real-time applications and economic aspects of HMR. It has been concluded that the application of nanomaterials both, in the existing technologies and novel methods, will help in increasing efficiency, better operational costs, and enhanced outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbas, A., Al-Amer, A. M., Laoui, T., Al-Marri, M. J., Nasser, M. S., & Khraisheh, M. (2016). Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications. Separation and Purification Technology, 157, 141–161.

    Google Scholar 

  • Agarwal, M., & Singh, K. (2017). Heavy metal removal from wastewater using various adsorbents: a review. Journal of Water Reuse and Desalination, 7(4), 387–419.

    Google Scholar 

  • Akoto, O., Bruce, T. N., & Darko, G. (2008). Heavy metals pollution profiles in streams serving the Owabi reservoir. African Journal of Environmental Science and Technology, 2, 354359.

    Google Scholar 

  • Al-Qahtani, K. M. (2017). Cadmium removal from aqueous solution by green synthesis zero valent silver nanoparticles with Benjamina leaves extract. The Egyptian Journal of Aquatic Research, 43(4), 269–274.

    Google Scholar 

  • Ali, A., Mannan, A., Hussain, I., Hussain, I., & Zia, M. (2018). Effective removal of metal ions from aquous solution by silver and zinc nanoparticles functionalized cellulose: isotherm, kinetics and statistical supposition of process. Environmental Nanotechnology, Monitoring and Management, 9, 1–11.

    Google Scholar 

  • Anjum, M., Miandad, R., Waqas, M., Gehany, F., & Barakat, M. A. (2016). Remediation of wastewater using various nano-materials. The Arabian Journal of Chemistry, 12(8), 4897–4919.

    Google Scholar 

  • Babaee, Y., Mulligan, C. N., & Rahaman, M. S. (2018). Removal of arsenic (III) and arsenic (V) from aqueous solutions through adsorption by Fe/Cu nanoparticles. Journal of Chemical Technology and Biotechnology, 93, 6371.

    Google Scholar 

  • Bañuelos, G. S., Arroyo, I., Pickering, I. J., Yang, S. I., & Freeman, J. L. (2015). Selenium biofortification of broccoli and carrots grown in soil amended with Se-enriched hyperaccumulator Stanleya pinnata. Food chemistry, 166, 603–608.

    Google Scholar 

  • Bao, Z., Cobb, R. E., & Zhao, H. (2016). Accelerated genome engineering through multiplexing. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 8, 5–21.

    CAS  Google Scholar 

  • Bazana, S. L., Shimabuku-Biadola, Q. L., Arakawa, F. S., Gomes, R. G., Cossich, E. S., & Bergamasco, R. (2019). Modified activated carbon with silver–copper mixed oxides nanoparticles for removal of heavy metals from water. International Journal of Environmental Science and Technology, 16, 6727–6734.

    CAS  Google Scholar 

  • Bernard E. I. , Stanley I. R. O., Grace O. I., Ebere P. A., Abraham O. A., & Ibe K. E. (2018). Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: A review. Hindawi, Journal of Toxicology, p. 16.

  • Bhanjana, G., Dilbaghi, N., Kim, K.-H., & Kumar, S. (2017a). Carbon nanotubes as sorbent material for removal of cadmium. Journal of Molecular Liquids, 242, 966970.

    Google Scholar 

  • Bhanjana, G., Dilbaghi, N., Kim, K. H., & Kumar, S. (2017b). Low temperature synthesis of copper oxide nanoflowers for lead removal using sonochemical route. Journal of Molecular Liquids, 244, 506–511.

    CAS  Google Scholar 

  • Bhargavi, R. J., Maheshwari, U., & Gupta, S. (2015). Synthesis and use of alumina nanoparticles as an adsorbent for the removal of Zn(II) and CBG dye from wastewater. International Journal of Industrial Chemistry, 6, 31–41.

    CAS  Google Scholar 

  • Booth, S. C., Weljie, A. M., & Turner, R. J. (2015). Metabolomics reveals differences of metal toxicity in cultures of Pseudomonas pseudoalcaligenes KF707 grown on different carbon sources”. Frontiers in Microbiology, 6, 827.

    Google Scholar 

  • Boujelben, N., Bouzid, J., & Elouear, Z. (2009). Adsorption of nickel and copper onto natural iron oxide-coated sand from aqueous solutions: study in single and binary systems. Journal of Hazardous Materials, 163(1), 376–382.

    CAS  Google Scholar 

  • Buxton, S., Garman, E., Heim, K. E., Lyons-Darden, T., Schlekat, C. E., Taylor, M. D., & Oller, A. R. (2019). Concise review of nickel human health toxicology and ecotoxicology. Inorganics, 7(7), 89.

    CAS  Google Scholar 

  • Bystrzejewski, M., Pyrzyńska, K., Huczko, A., & Lange, H. (2009). Carbon-encapsulated magnetic nanoparticles as separable and mobile sorbents of heavy metal ions from aqueous solutions. Carbon, 47(4), 1201–1204.

    CAS  Google Scholar 

  • Cai, Y., Li, C.,Wu, D.,Wang, W., Tan, F., Wang, X., Wong, P. K. & Qiao, X. (2016). Highly active MgO nanoparticles for simultaneous bacterial inactivation and heavy metal removal from aqueous solution. The Chemical Engineering Journal p. 312.

  • Cao, Y., Zhang, S., Wang, G., Li, T., Xu, X., Deng, O., et al. (2017). Enhancing the soil heavy metals removal efficiency by adding HPMA and PBTCA along with plant washing agents. Journal of Hazardous Materials., 339, 33–42.

    CAS  Google Scholar 

  • Carolin, C. F., Kumar, P. S., Saravanan, A., Joshiba, G. J., & Naushad, M. (2017). Efficient techniques for the removal of toxic heavy metals from aquatic environment: a review. The Journal of Environmental Chemical Engineering, 5, 2782–2799.

    CAS  Google Scholar 

  • Chen, K., He, J., Li, Y., Cai, X., Zhang, K., Liu, T., et al. (2017). Removal of cadmium and lead ions from water by sulfonated magnetic nanoparticle adsorbents. Journal of Colloid and Interface Science, 494, 307–316.

    CAS  Google Scholar 

  • Chen, S., Yin, H., Ye, J., Peng, H., Liu, Z., Dang, Z., & Chang, J. (2014). Influence of co-existed benzopyrene and copper on the cellular characteristics of Stenotrophomonas maltophilia during biodegradation and transformation. Bioresource Technology, 158, 181–187.

    CAS  Google Scholar 

  • Chen, T.-J., & Lin, C. H. (2011). Germanium: Environmental pollution and health effects. Encyclopedia of environmental health, pp. 927–933, Elsevier, Amsterdam

  • Choi, D. H., Kwon, Y. M., Kwon, K. K., & Kim, S.-J. (2015). Complete genome sequence of Novosphingobium pentaromativorans US6-1(T). Standards in Genomic Sciences, 10, 107.

    Google Scholar 

  • Cima, F. (2011). Tin: Environmental Pollution and Health Effects. Encyclopedia of Environmental Health, 10, 351–359.

    Google Scholar 

  • Coelho, L. M., Rezende, H. C., Priscila, A. R., de Sousa, P. A., Danielle, F. O., Melo Nívia, M. M., & Coelho, N. M. (2015). Bioremediation of polluted waters using microorganisms. Advances in Bioremediation of Wastewater and Polluted Soil, 10, 60770.

    Google Scholar 

  • Cui, B., Zhang, X., Han, G., & Li, K. (2016). Antioxidant Defense Response and Growth Reaction of Amorpha fruticosa Seedlings in Petroleum-Contaminated Soil. Water, Air, and Soil pollution, 227, 121.

    Google Scholar 

  • Cumbal, L., & Sengupta, A. K. (2005). Arsenic removal using polymer-supported hydrated iron(III) oxide nano- particles: role of Donnan membrane effect. Environmental Science and Technology, 39, 6508–6515.

    CAS  Google Scholar 

  • Dargahi, A., Golestanifar, H., Darvishi, P., Karami, A., Hasan, S. H., Poormohammadi, A., & Behzadnia, A. (2016). An Investigation and comparison of removing heavy metals (lead and chromium) from aqueous solutions using magnesium oxide nanoparticles. The Polish Journal of Environmental Studies, 25(2), 557–562.

    CAS  Google Scholar 

  • Debnath, B., Singh, W., & Manna, K. (2019). Sources and toxicological effects of lead on human health. Indian Journal of Medical Specialities, 10(2), 66–71.

    Google Scholar 

  • Deliyanni, E. A., Nalbandian, L., & Matis, K. A. (2006). Adsorptive removal of arsenites by a nanocrystalline hybrid surfactantakaganeite sorbent. Journal of Colloid and Interface Science, 302, 458–466.

    CAS  Google Scholar 

  • El-Metwally, S., Ouda, O. M., & Helmy, M. (2014). Next generation sequencing technologies and challenges in sequence assembly (Vol. 1). New York, NY: Springer.

    Google Scholar 

  • Emenike, C. U., Jayanthi, B., Agamuthu, P., & Fauziah, S. H. (2018). Biotransformation and removal of heavy metals: a review of phytoremediation and microbial remediation assessment on contaminated soil. Environmental Reviews, 26(2), 156–168.

    CAS  Google Scholar 

  • Feng, Z., Zhu, S., Martins de Godoi, D. R., Samia, A. C. S., & Scherson, D. (2012). Adsorption of Cd2+ on carboxyl-terminated superparamagnetic iron oxide nanoparticles. Analytical chemistry, 84(8), 3764–3770.

    CAS  Google Scholar 

  • Ferroudj, N., Nzimoto, J., Davidson, A., Talbot, D., Briot, E., Dupuis, V., & Abramson, S. (2013). Maghemite nanoparticles and maghemite/silica nanocomposite microspheres as magnetic Fenton catalysts for the removal of water pollutants. Applied Catalysis B: Environmental, 136, 9–18.

    Google Scholar 

  • Fidelis, N. (2014). Synthesis of gold nanoparticles and their application for detection and removal of water contaminants: Review. Media Sains: Jurnal Matematika dan Ilmu Pengetahuan Alam., 13, 221–232.

    Google Scholar 

  • Filippini, T., Tancredi, S., Malagoli, C., Cilloni, S., Malavolti, M., Violi, F., et al. (2019). Aluminum and tin: Food contamination and dietary intake in an Italian population. Journal of Trace Elements in Medicine and Biology, 52, 293–301.

    CAS  Google Scholar 

  • Fomina, M., & Gadd, G. M. (2014). Biosorption: current perspectives on concept, definition and application. Bioresource Technology, 160, 3–14.

    CAS  Google Scholar 

  • Fosso-Kankeu, E., & Mulaba-Bafubiandi, A. F. (2014). Implication of plants and microbial metalloproteins in the bioremediation of polluted waters: a review. Physics and Chemistry of the Earth, Parts A/B/C, 67–69, 242–252.

    Google Scholar 

  • Fu, F., Ma, J., Xie, L., Tang, B., Han, W., & Lin, S. (2013). Chromium removal using resin supported nanoscale zero-valent iron. Journal of Environmental Management, 128, 822–827.

    CAS  Google Scholar 

  • Fukunaga, A., & Anderson, M. J. (2011). Bioaccumulation of copper, lead and zinc by the bi-valves Macomona liliana and Austrovenus stutchburyi. Journal of Experimental Marine Biology and Ecology, 396(2), 244–252.

    CAS  Google Scholar 

  • Gadd, G. M. (2009). Biosorption: Critical review of scientific rationale, environmental importance and significance for pollution treatment. Journal of Chemical Technology and Biotechnology, 84(1), 13–28.

    CAS  Google Scholar 

  • Ganzagh, M. A. A., Yousefpour, M., & Taherian, Z. (2016). The removal of mercury (II) from water by Ag supported on nanomesoporous silica. Journal of chemical biology, 9(4), 127–142.

    Google Scholar 

  • Gauthier, P. T., Norwood, W. P., Prepas, E. E., & Pyle, G. G. (2014). Metal-PAH mixtures in the aquatic environment: A review of co-toxic mechanisms leading to more-than-additive outcomes. Aquatic Toxicology, 154, 253–269.

    CAS  Google Scholar 

  • Ge, F., Li, M. M., Ye, H., & Zhao, B. X. (2012). Effective removal of heavy metal ions Cd21, Zn21, Pb21, Cu21 from aqueous solution by polymer-modified magnetic nanoparticles. Journal of Hazardous Materials, 211(212), 366–372.

    Google Scholar 

  • Genchi, G., Carocci, A., Lauria, G., Sinicropi, M. S., & Catalano, A. (2020). Nickel: Human health and environmental toxicology. International Journal of Environmental Research and Public Health, 17, 679.

    CAS  Google Scholar 

  • Gopalakrishnan, A., Krishnan, R., Thangavel, S., Venugopal, G., & Kim, S. J. (2015). Removal of heavy metal ions from pharma-effluents using graphene-oxide nanosorbents and study of their adsorption kinetics. Journal of Industrial and Engineering Chemistry, 30, 14–19.

    CAS  Google Scholar 

  • Gupta, A., & Joia, J. (2016). Microbes as potential tool for remediation of heavy metals: A review. Journal of Microbial and Biochemical Technology. https://doi.org/10.4172/1948-5948.1000310

    Article  Google Scholar 

  • Gupta, V. K., Tyagi, I., Sadegh, H., Shahryari-Ghoshekand, R., Makhlouf, A. S. H., & Maazinejad, B. (2015). Nanoparticles as adsor- bent; a positive approach for removal of noxious metal ions: a review. Science, Technology and Development, 34, 195.

    Google Scholar 

  • Hashimoto, K., Irie, H., & Fujishima, A. (2005). TiO2 photocatalysis: A historical overview and future prospects. Japanese Journal of Applied Physics, 44, 8269–8285.

    CAS  Google Scholar 

  • Hassan, K. H., Jarullah, A. A., & Saadi, S. K. (2009). Synthesis of copper oxide nanoparticle as an adsorbent for removal of Cd (II) and Ni (II) ions from binary system. International Journal of Applied Environmental Sciences, 12(11), 1841–1861.

    Google Scholar 

  • He, B., Yun, Z. J., Shi, J. B., & Jiang, G. B. (2013). Research progress of heavy metal pollution in China: sources, analytical methods, status, and toxicity. Chinese Science Bulletin, 58(2), 134–140.

    CAS  Google Scholar 

  • Hossein Beyki, M., Ghasemi, M. H., Jamali, A., & Shemirani, F. (2017). A novel polylysineresorcinol base γ-alumina nanotube hybrid material for effective adsorption/preconcentration of cadmium from various matrices. Journal of Industrial and Engineering Chemistry, 46, 165–174.

    CAS  Google Scholar 

  • Hu, J., Chen, G., & Lo, I. M. C. (2005). Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles. Water Research, 39(18), 4528–4536.

    CAS  Google Scholar 

  • Hussain, C. M. (2020). The Handbook of Environmental Remediation: Classic and Modern Techniques. Royal Society of Chemistry. https://books.google.co.in/books?id=ttvWDwAAQBAJ

  • Jaishankar, M., Tseten, T., & Anbalagan, N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7, 60–72.

    Google Scholar 

  • Jiang, X. F., Weng, Q., Wang, X. B., Li, X., Zhang, J., Golberg, D., & Bando, Y. (2015). Recent progress on fabrications and applications of boron nitride nanomaterials: A review. Journal of Materials Science and Technology, 31, 589–598.

    CAS  Google Scholar 

  • Kamarudin, K. S. N., & Mohamad, M. F. (2010). Synthesis of gold (Au) nanoparticles for mercury adsorption. American Journal of Applied Sciences, 7(6), 835–839.

    CAS  Google Scholar 

  • Kamat, P. V., Huehn, R., & Nicolaescu, R. A. (2002). A Sense and shoot approach for photocatalytic degradation of organic contaminants in water. The Journal of Physical Chemistry B, 106, 788–794.

    CAS  Google Scholar 

  • Kapahi, M., & Sachdeva, S. (2019). Bioremediation options for heavy metal pollution. Journal of Health and Pollution, 9(24), 191203.

    Google Scholar 

  • Kaushal, A., & Singh, S. K. (2017). Removal of heavy metals by nanoadsorbents: A review. Journal of Environmental and biotechnological research, 6(1), 96–104.

    Google Scholar 

  • Kennen, K., & Kirkwood, N. (2015). Phyto: Principles and resources for site remediation and landscape design. London: Routledge.

    Google Scholar 

  • Kocabaş-Ataklı, Z. Ö., & Yürüm, Y. (2013). Synthesis and characterization of anatase nanoadsorbent and application in removal of lead, copper and arsenic from water. Chemical Engineering Journal, 225, 625–635.

    Google Scholar 

  • Kumar, S., Nair, R. R., Pillai, P. B., Gupta, S. N., Iyengar, M. A. R., & Sood, A. K. (2014). Graphene oxide-MnFe2O4 magnetic nanohybrids for efficient removal of lead and arsenic from water. ACS Applied Materials and Interfaces, 6, 17426–17436.

    CAS  Google Scholar 

  • Lata, S., & Samadder, S. R. (2016). Removal of arsenic from water using nano adsorbents and challenges: a review. Journal of Environmental Management, 166, 387–406.

    CAS  Google Scholar 

  • Leung, P. T. Y., Ip, J. C. H., Mak, S. S. T., Qiu, J. W., Lam, P. K. S., Wong, C. K. C., et al. (2014). De novo transcriptome analysis of Perna viridis highlights tissue-specific patterns for environmental studies. BMC Genomics, 15, 804.

    Google Scholar 

  • Leyssens, L., Vinck, B., Van Der Straeten, C., Wuyts, F., & Maes, L. (2017). Cobalt toxicity in humans-A review of the potential sources and systemic health effects. Toxicology, 387, 43–56.

    CAS  Google Scholar 

  • Li, Y.-H., Ding, J., Luan, Z., Di, Z., Zhu, Y., Xu, C., et al. (2003). Competitive adsorption of Pb21, Cu21 and Cd21 ions from aqueous solutions by multiwalled carbon nanotubes. Carbon N. Y, 41, 2787–2792.

    CAS  Google Scholar 

  • Lin, Y., Huang, C., & Chang, H. (2011). Gold nanoparticle probes for the detection of mercury, lead and copper ions. Analyst, 136, 863–871.

    CAS  Google Scholar 

  • Lo, S.-I., Chen, P.-C., Huang, C.-C., & Chang, H.-T. (2012). Gold nanoparticle-aluminum oxide adsorbent for efficient removal of mercury species from natural waters. Environmental Science and Technology, 46(5), 2724–2730.

    CAS  Google Scholar 

  • Lo ́pezMaury, Giner-Lamia, J., L., Florencio, F. J. & Janssen, P. J. (2014). Global transcriptional profiles of the copper responses in the cyanobacterium synechocystis sp. PCC 6803, PLoS ONE, 9(9)

  • Lou, Z., Cao, Z., Xu, J., Zhou, X., Zhu, J., Liu, X., et al. (2017). Enhanced removal of As (III)/(V) from water by simultaneously supported and stabilized Fe-Mn binary oxide nanohybrids. Chemical Engineering Journal, 322, 710–721.

    CAS  Google Scholar 

  • Mahmoud, A. M., Ibrahim, F. A., Shaban, S. A., & Youssef, N. A. (2015). Adsorption of heavy metal ion from aqueous solution by nickel oxide nano catalyst prepared by different methods. Egyptian Journal of Petroleum, 24, 27–35.

    Google Scholar 

  • Malini, S., Kumar, S. V., Hariharan, R., Bharathi, A. P., Devi, P. R., & Hemananthan, E. (2020). Antibacterial, photocatalytic and biosorption activity of chitosan nanocapsules embedded with Prosopis juliflora leaf extract synthesized silver nanoparticles. Materials Today: Proceedings, 21, 828–832.

    CAS  Google Scholar 

  • Mallikarjunaiah, S., Pattabhiramaiah, M., & Metikurki, B. (2020). Application of Nanotechnology in the Bioremediation of Heavy Metals and Wastewater Management. Nanotechnology for food, agriculture, and environment (pp. 297–321). Berlin: Springer.

    Google Scholar 

  • Mayo, J. T., Yavuz, C., Yean, S., Cong, L., Shiple, H., & Yu, W. (2007). The effect of nanocrystalline magnetite size on arsenic removal. Science and Technology of Advanced Materials, 8, 7175.

    Google Scholar 

  • Mishra, A., & Malik, A. (2013). Recent advances in microbial metal bioaccumulation. Critical Reviews in Environment Science and Technology, 43, 1162–1222.

    CAS  Google Scholar 

  • Mochizuki, H. (2019). Arsenic Neurotoxicity in Humans. International journal of molecular sciences, 20(14), 3418.

    CAS  Google Scholar 

  • Mosa, K. A., Saadoun, I., Kumar, K., Helmy, M., & Dhankher, O. P. (2016). Potential biotechnological strategies for the cleanup of heavy metals and metalloids. Frontiers in Plant Science, 7, 1–14.

    Google Scholar 

  • Muthusaravanan, S., Sivarajasekar, N., Vivek, J. S., Paramasivan, T., Naushad, M., Prakashmaran, J., & Al-Duaij, O. K. (2018). Phytoremediation of heavy metals: mechanisms, methods and enhancements. Environmental chemistry letters, 16(4), 1339–1359.

    CAS  Google Scholar 

  • Nasrollahzadeh, M., Issaabadi, Z., Sajjadi, M., Sajadi, S. M., & Atarod, M. (2019). Chapter 2 types of nanostructures. Interface science and technology (Vol. 28, pp. 29–80). Amsterdam: Elsevier.

    Google Scholar 

  • Nassar, N. N. (2012). Rapid removal and recovery of Pb(II) from wastewater by magnetic nanoadsorbents. Journal of Hazardous Materials, 184, 538–546.

    Google Scholar 

  • Naz, T., Khan, M. D., Ahmed, I., Rehman, S. U., Rha, E. S., Malook, I., et al. (2015). Biosorption of heavy metals by Pseudomonas species isolated from sugar industry. Toxicology and Industrial Health, 32(9), 1619–1627.

    Google Scholar 

  • Nicolaou, S. A., Gaida, S. M., & Papoutsakis, E. T. (2010). A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: from biofuels and chemicals, to biocatalysis and bioremediation. Metabolic Engineering, 12(4), 307–331.

    CAS  Google Scholar 

  • Nyambuu, U., & Semmler, W. (2014). Trends in the extraction of non- renewable resources: the case of fossil energy. Economic Modelling, 37, 271–279.

    Google Scholar 

  • OECD (Organisation for Economic Co-operation and Development), . (2010). List of manufactured nanomaterials and list of endpoints for phase one of the sponsorship programme for the testing of manufactured nanomaterials: Revision; series on the safety of manufactured nanomaterials 27. Paris: Organisation for Economic Co- operation and Development.

    Google Scholar 

  • Parmar, S., & Singh, V. (2015). Phytoremediation approaches for heavy metal pollution: A review. Journal of Plant Science and Research, 2, 1–8.

    Google Scholar 

  • Parsons, J. G., Lopez, M. L., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2009). Determination of arsenic (III) and arsenic(V) binding to microwave assisted hydrothermal synthetically prepared Fe3O4, Mn3O4, and MnFe2O4 nanoadsorbents. Microchemical Journal, 91, 100106.

    Google Scholar 

  • Parvin, F., Rikta, S. Y., & Tareq, S. M. (2019). Application of nanomaterials for the removal of heavy metal from wastewater. Nanotechnology in water and wastewater treatment (pp. 137–157). Amsterdam: Elsevier.

    Google Scholar 

  • Peng, X., Luan, Z., Ding, J., Di, Z., Li, Y., & Tian, B. (2005). Ceria nanoparticles supported on carbon nanotubes for the removal of arsenate from water. Materials Letters, 59, 399–403.

    CAS  Google Scholar 

  • Perpetuo E. A., Souza C. B., Nascimento C. A. O. Engineering bacteria for bioreme-diation. (2011). In: Carpi A. (ed.) Progress in Molecular and Environmental Bioengineering-From Analysis and Modeling to Technology Applications. Rijeka: InTech, pp. 605–632

  • Prasad, M. N. V., & De Oliveira Freitas, H. M. (2003). Metal hyperaccumulation in plants—Biodiversity prospecting for phytoremediation technology. Electronic Journal of Biotechnology, 6, 110–146.

    Google Scholar 

  • Prasad, R., Kumar, V., Kumar, M., & Wang, S. (2018). Fungal nanobionics: Principles and applications

  • Prasad, R., & Thirugnanasanbandham, K. (Eds.) (2019). Advanced research in nanosciences for water technology. Nanotechnology in the life sciences

  • Qian, H., Pretzer, L., Velazquez, J. C., Zhao, Z., & Wong, M. S. (2013). Gold nanoparticles for cleaning contaminated water. Journal of Chemical Technology and Biotechnology, 88(5), 735–741.

    CAS  Google Scholar 

  • Qu, X., Alvarez, P. J. J., & Li, Q. (2013). Applications of nanotechnology in water and wastewater treatment. Water Research, 47, 3931–3946.

    CAS  Google Scholar 

  • Rafati Rahimzadeh, M., Rafati Rahimzadeh, M., Kazemi, S., & Moghadamnia, A. A. (2017). Cadmium toxicity and treatment: An update. Caspian journal of internal medicine, 8(3), 135–145.

    Google Scholar 

  • Recillas, S., García, A., González, E., Casals, E., Puntes, V., Sánchez, A., et al. (2011). Use of CeO2, TiO2 and Fe3O4 nanoparticles for the removal of lead from water. Desalination, 277, 213–220.

    CAS  Google Scholar 

  • Reza, R., & Singh, G. (2010). Heavy metal contamination and its indexing approach for river water. International Journal of Environmental Science and Technology, 7, 785792. https://doi.org/10.1007/BF03326187

    Article  Google Scholar 

  • Rim, K. T., Koo, K. H., & Park, J. S. (2013). Toxicological evaluations of rare earths and their health impacts to workers: A literature review. Safety and Health at Work, 4(1), 12–26.

    CAS  Google Scholar 

  • Rodriguez-Perez, J., Lopez-Anton, M., Diaz-Somoano, M., Garcia, R., & Martinez-Tarazona, M. (2011). Development of gold nanoparticle-doped activated carbon sorbent for elemental mercury. Energy and Fuels, 25(5), 2022–2027.

    CAS  Google Scholar 

  • Rodríguez, C. A., Casals, E., Puntes, V., Komilis, D., Sánchez, A., & Font Segura, X. (2015). Use of cerium oxide (CeO2) nanoparticles for the adsorption of dissolved cadmium (II), lead (II) and chromium (VI) at two different pHs in single and multi-component systems. Global Nest Journal, 17, 536–543.

    Google Scholar 

  • Roy, A., & Bharadvaja, N. (2020). Removal of toxic pollutants using microbial fuel cells. In Removal of toxic pollutants through microbiological and tertiary treatment (pp. 153–177). Elsevier.

  • Roy, A., & Bhattacharya, J. (2012). Removal of Cu (II), Zn (II) and Pb (II) from water using microwave-assisted synthesized maghemite nanotubes. Chemical Engineering Journal, 211, 493–500.

    Google Scholar 

  • Samrot, A. V., Angalene, J. L. A., Roshini, S. M., Raji, P., Stefi, S. M., Preethi, R., & Madankumar, A. (2019). Bioactivity and heavy metal removal using plant gum mediated green synthesized silver nanoparticles. Journal of Cluster Science, 30(6), 1599–1610.

    CAS  Google Scholar 

  • Schutyser, W., Renders, T., Van den Bosch, S., Koelewijn, S.-F., Beckham, G. T., & Sels, B. F. (2018). Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chemical Society Reviews, 47(3), 852–908.

    CAS  Google Scholar 

  • Scott, A., Gupta, R., & Kulkarni, G. U. (2010). A simple water-based synthesis of Au nanoparticle/PDMS composites for water purification and targeted drug release. Macromolecular Chemistry and Physics, 211(15), 1640–1647.

    CAS  Google Scholar 

  • Shahinasi, E., Devolli, A., & Mariola, K. (2019). Chapter-7 inorganic toxicity: CHROMIUM. Inorganic Toxicity: Environment and Human Health

  • Sharma, M., Singh, J., Hazra, S., & Basu, S. (2019). Adsorption of heavy metal ions by mesoporous ZnO and TiO2 ZnO monoliths: Adsorption and kinetic studies. Microchemical Journal, 145, 105–112.

    CAS  Google Scholar 

  • Sharma, S., Tiwari, S., Hasan, A., Saxena, V., & Pandey, L. M. (2018). Recent advances in conventional and contemporary methods for remediation of heavy metal-contaminated soils. 3 Biotech, 8(4), 216. https://doi.org/10.1007/s13205-018-1237-8

    Article  Google Scholar 

  • Sheela, T., & Nayaka, Y. A. (2012). Kinetics and thermodynamics of cadmium and lead ions adsorption on NiO nanoparticles. Chemical Engineering Journal, 191, 123131.

    Google Scholar 

  • Shende, P., Kasture, P., & Gaud, R. S. (2018). Nanoflowers: The future trend of nanotechnology for multi-applications. Artificial Cells, Nanomedicine, and Biotechnology, 46, 413–422.

    CAS  Google Scholar 

  • Shi, B., Huang, Z., Xiang, X., Huang, M., Wang, W.-X., & Ke, C. (2015). Transcriptome analysis of the key role of GAT2 gene in the hyper-accumulation of copper in the oyster Crassostrea angulata. Scientific Reports, 5, 17751.

    CAS  Google Scholar 

  • Shittu, K. O., & Ihebunna, O. (2017). Purification of simulated waste water using green synthesized silver nanoparticles of Piliostigma thonningii aqueous leave extract. Advances in Natural Sciences: Nanoscience and Nanotechnology, 8(4), 045003.

    Google Scholar 

  • Shokati Poursani, A., Nilchi, A., Hassani, A., Tabibian, S., & Asad Amraji, L. (2017). Synthesis of nano-γ-Al2O3/chitosan beads (AlCBs) and continuous heavy metals removal from liquid solution. International Journal of Environmental Science and Technology, 14, 1459–1468.

    CAS  Google Scholar 

  • Singh, D. K., Verma, D. K., Singh, Y., & Hasan, S. H. (2017). Preparation of CuO nanoparticles using Tamarindus indica pulp extract for removal of As(III): optimization of adsorption process by ANN-GA. The Journal of Environmental Chemical Engineering, 5, 1302–1318.

    CAS  Google Scholar 

  • Subramaniam, M. N., Goh, P. S., Lau, W. J., & Ismail, A. F. (2019). The roles of nanomaterials in conventional and emerging technologies for heavy metal removal: A state-of-the-art review. Nanomaterials (Basel, Switzerland), 9(4), 625.

    CAS  Google Scholar 

  • Sumesh, E., Bootharaju, M. S., & Anshup., Pradeep, T. . (2011). A practical silver nanoparticle-based adsorbent for the removal of Hg2+ from water. Journal of Hazardous Materials, 189, 450–457.

    CAS  Google Scholar 

  • Sun, W., Jiang, B., Wang, F., & Xu, N. (2015). Effect of carbon nanotubes on Cd (II) adsorption by sediments. Chemical Engineering Journal, 264, 645–653.

    CAS  Google Scholar 

  • Tabesh, S., Davar, F., & Loghman-Estarki, M. R. (2018). Preparation of γ-Al2O3 nanoparticles using modified sol- gel method and its use for the adsorption of lead and cadmium ions. Journal of Alloys and Compounds, 730, 441–449.

    CAS  Google Scholar 

  • Tahar, L. B., Oueslati, M. H., & Abualreish, M. J. A. (2018). Synthesis of magnetite derivatives nanoparticles and their application for the removal of chromium (VI) from aqueous solutions. Journal of Colloid and Interface Science, 512, 115–126.

    CAS  Google Scholar 

  • Tan, B., Ng, C., Nshimyimana, J. P., Loh, L. L., Gin, K.Y.-H., & Thompson, J. R. (2015). Next-generation sequencing (NGS) for assessment of microbial water quality: current progress, challenges, and future opportunities. Frontiers in Microbiology, 6, 1027.

    Google Scholar 

  • Tang, W. W., Zeng, G. M., Gong, J. L., Liu, Y., Wang, X. Y., Liu, Y. Y., et al. (2012). Simultaneous adsorption of atrazine and Cu(II) from wastewater by magnetic multi-walled carbon nanotube. Chemical Engineering Journal, 211, 470–478.

    Google Scholar 

  • Tarigh, G. D., & Shemirani, F. (2013). Magnetic multi-wall carbon nanotube nanocomposite as an adsorbent for preconcentration and determination of lead (II) and manganese (II) in various matrices. Talanta, 115, 744–750.

    Google Scholar 

  • Taylor, A. A., Tsuji, J. S., Garry, M. R., et al. (2020). Critical review of exposure and effects: Implications for setting regulatory health criteria for ingested copper. Environmental Management, 65, 131–159.

    Google Scholar 

  • Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metal toxicity and the environment. Experientia supplementum, 101, 133–164.

    Google Scholar 

  • Thangadurai D., Sangeetha J., Prasad R. (eds) (2020). Nanotechnology for food, agriculture, and environment. Nanotechnology in the life sciences. Springer, Cham.

  • Tran, V. S., Ngo, H. H., Guo, W., Zhang, J., Liang, S., Ton-That, C., et al. (2015). Typical low cost biosorbents for adsorptive removal of specific organic pollutants from water. Bioresource Technology, 182, 353–363.

    CAS  Google Scholar 

  • Vardhan, K. H., Kumar, P. S., & Panda, R. C. (2019). A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. Journal of Molecular Liquids, 290, 111197.

    CAS  Google Scholar 

  • Verma, A., Roy, A., & Bharadvaja, N. (2020). Remediation of heavy metals using nanophytoremediation. In Advanced oxidation processes for effluent treatment plants (pp. 273–296). Elsevier.

  • Wang, C., & Yu, C. (2013). Detection of chemical pollutants in water using gold nanoparticles as sensors: a review. Reviews in Analytical Chemistry, 32(1), 1–14.

    Google Scholar 

  • Wasilkowski, D., Swedzio, Ż, & Mrozik, A. (2012). The applicability of genetically modified microorganisms in bioremediation of contaminated environments. Chemik, 66(8), 822–826.

    Google Scholar 

  • World Health Organization. (2019). https://www.who.int/news-room/fact-sheets/detail/drinking-water#:~:text=Globally%2C%20at%20least%202%20billion,water%20source%20contaminated%20with%20faeces.&text=Contaminated%20drinking%20water%20is%20estimated,living%20in%20water%2Dstressed%20areas.

  • Xun, E., Zhang, Y., Zhao, J., & Guo, J. (2017). Translocation of heavy metals from soils into floral organs and rewards of Cucurbita pepo: Implications for plant reproductive fitness. Ecotoxicology and Environmental Safety, 145, 235–243.

    CAS  Google Scholar 

  • Yadav, K. K., Singh, J. K., Gupta, N., & Kumar, V. (2017). A review of nanobioremediation technologies for environmental cleanup: A novel biological approach. JMES, 8(2), 740–757.

    CAS  Google Scholar 

  • Yang, S. T., Chen, S., Chang, Y., Cao, A., Liu, Y., & Wang, H. (2011). Removal of methylene blue from aqueous solution by grapheme oxide. Journal of Colloid and Interface Science, 359(1), 24–29.

    CAS  Google Scholar 

  • Yang, J., Hou, B., Wang, J., Tian, B., Bi, J., Wang, N., et al. (2019). Nanomaterials for the Removal of Heavy Metals from Wastewater. Nanomater, 9, 424. https://doi.org/10.3390/nano9030424

    Article  CAS  Google Scholar 

  • Zhang, S., Niu, H., Cai, Y., Zhao, X., & Shi, Y. (2010). Arsenite and arsenate adsorption on coprecipitated bimetal oxide magnetic nanomaterials: MnFe2O4 and CoFe2O4. Chemical Engineering Journal, 158, 599607.

    Google Scholar 

  • Zhao, W., Wei, Z., Ma, L., Liang, J., & Zhang, X. (2019). Ag2S quantum dots based on flower-like SnS2 as matrix and enhanced photocatalytic degradation. Materials., 12, 582.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arpita Roy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, S., Roy, A. Bioremediation of heavy metals from wastewater using nanomaterials. Environ Dev Sustain 23, 9617–9640 (2021). https://doi.org/10.1007/s10668-020-01078-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-020-01078-1

Keywords

Navigation