Skip to main content

Advertisement

Log in

GIS-based statistical model for the prediction of flood hazard susceptibility

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

At present, flood is the most significant environmental problem in the entire world. In this work, flood susceptibility (FS) analysis has been done in the Dwarkeswar River basin of Bengal basin, India. Fourteen flood causative factors extracted from different datasets like DEM, satellite images, geology, soil and rainfall data have been considered to predict FS. Three heuristic models and one statistical model fuzzy Logic (FL), frequency ratio (FR), multi-criteria decision analysis (MCDA) and logistic regression (LR) have been used. The validating datasets are used to validate these models. The result shows that 68.71%, 68.7%, 60.56% and 48.51% area of the basin is under the moderate to very high FS by the MCDA, FR, FL and LR, respectively. The ROC curve with AUC analysis has shown that the accuracy level of the LR model (AUC = 0.916) is very much successful to predict the flood. The rest of the models like FL, MCDA and FR (AUC = 0.893, 0.857 and 0.835, respectively) have lesser accuracy than the LR model. The elevation was the most dominating factor with coefficient value of 19.078 in preparation of the FS according to the LR model. The outcome of this study can be implemented by local and state authority to minimize the flood hazard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Al-Juaidi, A. E. M., Nassar, A. M., & Al-Juaidi, O. E. M. (2018). Evaluation of flood susceptibility mapping using logistic regression and GIS conditioning factors. Arabian Journal of Geosciences, 11(24), 765. https://doi.org/10.1007/s12517-018-4095-0.

    Article  Google Scholar 

  • Arabameri, A., Karimi-Sangchini, E., Pal, S. C., Saha, A., Chowdhuri, I., Lee, S., & Tien Bui, D. (2020a). Novel Credal Decision Tree-Based Ensemble Approaches for Predicting the Landslide Susceptibility. Remote Sensing, 12(20), 3389. https://doi.org/10.3390/rs12203389.

    Article  Google Scholar 

  • Arabameri, A., Pradhan, B., & Lombardo, L. (2019a). Comparative assessment using boosted regression trees, binary logistic regression, frequency ratio and numerical risk factor for gully erosion susceptibility modelling. CATENA, 183, 104223. https://doi.org/10.1016/j.catena.2019.104223.

    Article  Google Scholar 

  • Arabameri, A., Pradhan, B., Rezaei, K., & Lee, C. W. (2019). Assessment of landslide susceptibility using statistical- and artificial intelligence-based FR-RF integrated model and multiresolution DEMs. Remote Sensing, 11(9), 999. https://doi.org/10.3390/rs11090999.

    Article  Google Scholar 

  • Arabameri, A., Saha, S., Mukherjee, K., Blaschke, T., Chen, W., Ngo, P. T. T., & Band, S. S. (2020). Modeling Spatial Flood using Novel Ensemble Artificial Intelligence Approaches in Northern Iran. Remote Sensing, 12(20), 3423. https://doi.org/10.3390/rs12203423.

    Article  Google Scholar 

  • Band, S. S., Janizadeh, S., Chandra Pal, S., Saha, A., Chakrabortty, R., Melesse, A. M., & Mosavi, A. (2020). Flash Flood Susceptibility Modeling Using New Approaches of Hybrid and Ensemble Tree-Based Machine Learning Algorithms. Remote Sensing, 12(21), 3568. https://doi.org/10.3390/rs12213568.

    Article  Google Scholar 

  • Bandyopadhyay, S., Ghosh, P. K., Jana, N. C., & Sinha, S. (2016). Probability of flooding and vulnerability assessment in the Ajay River, Eastern India: implications for mitigation. Environmental Earth Sciences, 75(7), 578. https://doi.org/10.1007/s12665-016-5297-y.

    Article  Google Scholar 

  • Bonham-Carter, G. F. (1994). Geographic information systems for geoscientists-modeling with GIS. Computer methods in the geoscientists, 13, 398.

    Google Scholar 

  • Brammer, H. (2010). After the Bangladesh flood action plan: looking to the future. Environmental Hazards, 9(1), 118–130.

    Article  Google Scholar 

  • Chakrabortty, R., Pal, S. C., Malik, S., & Das, B. (2018). Modeling and mapping of groundwater potentiality zones using AHP and GIS technique: a case study of Raniganj Block, Paschim Bardhaman, West Bengal. Modeling Earth Systems and Environment, 4(3), 1085–1110. https://doi.org/10.1007/s40808-018-0471-8.

    Article  Google Scholar 

  • Chakraborty, S., & Mukhopadhyay, S. (2019). Assessing flood risk using analytical hierarchy process (AHP) and geographical information system (GIS): application in Coochbehar district of West Bengal. India. Natural Hazards, 99(1), 247–274. https://doi.org/10.1007/s11069-019-03737-7.

    Article  Google Scholar 

  • Chapi, K., Singh, V. P., Shirzadi, A., Shahabi, H., Bui, D. T., Pham, B. T., & Khosravi, K. (2017). A novel hybrid artificial intelligence approach for flood susceptibility assessment. Environmental Modelling & Software, 95, 229–245. https://doi.org/10.1016/j.envsoft.2017.06.012.

    Article  Google Scholar 

  • Chapman, G. P., & Rudra, K. (2007). Water as Foe, Water as Friend: Lessons from Bengal’s Millennium Flood. Journal of South Asian Development, 2(1), 19–49. https://doi.org/10.1177/097317410600200102.

    Article  Google Scholar 

  • Chen, W., Li, Y., Xue, W., Shahabi, H., Li, S., Hong, H., et al. (2020). Modeling flood susceptibility using data-driven approaches of naïve bayes tree, alternating decision tree, and random forest methods. Science of The Total Environment, 701, 134979.

    Article  CAS  Google Scholar 

  • Choubin, B., Moradi, E., Golshan, M., Adamowski, J., Sajedi-Hosseini, F., & Mosavi, A. (2019). An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines. Science of the Total Environment, 651, 2087–2096. https://doi.org/10.1016/j.scitotenv.2018.10.064.

    Article  CAS  Google Scholar 

  • Chowdhuri, I., Pal, S. C., Arabameri, A., Saha, A., Chakrabortty, R., Blaschke, T., et al. (2020). Implementation of Artificial Intelligence Based Ensemble Models for Gully Erosion Susceptibility Assessment. Remote Sensing, 12(21), 3620. https://doi.org/10.3390/rs12213620.

    Article  Google Scholar 

  • Chowdhuri, I., Pal, S. C., & Chakrabortty, R. (2020). Flood susceptibility mapping by ensemble evidential belief function and binomial logistic regression model on river basin of eastern India. Advances in Space Research, 65(5), 1466–1489. https://doi.org/10.1016/j.asr.2019.12.003.

    Article  Google Scholar 

  • Christensen, J. H., & Christensen, O. B. (2003). Severe summertime flooding in Europe. Nature, 421(6925), 805–806. https://doi.org/10.1038/421805a.

    Article  CAS  Google Scholar 

  • Costabile, P., & Macchione, F. (2015). Enhancing river model set-up for 2-D dynamic flood modelling. Environmental Modelling and Software, 67, 89–107. https://doi.org/10.1016/j.envsoft.2015.01.009.

    Article  Google Scholar 

  • Costache, R., Arabameri, A., Blaschke, T., Pham, Q. B., Pham, B. T., Pandey, M., et al. (2021). Flash-Flood Potential Mapping Using Deep Learning, Alternating Decision Trees and Data Provided by Remote Sensing Sensors. Sensors, 21(1), 280.

    Article  Google Scholar 

  • Dano, U. L., Balogun, A.-L., Matori, A.-N., Wan Yusouf, K., Abubakar, I. R., Said Mohamed, M. A., et al. (2019). Flood Susceptibility Mapping Using GIS-Based Analytic Network Process: A Case Study of Perlis. Malaysia. Water, 11(3), 615. https://doi.org/10.3390/w11030615.

    Article  Google Scholar 

  • Das, B., Pal, S. C., & Malik, S. (2018). Assessment of flood hazard in a riverine tract between Damodar and Dwarkeswar River, Hugli District, West Bengal. India. Spatial Information Research, 26(1), 91–101. https://doi.org/10.1007/s41324-017-0157-8.

    Article  Google Scholar 

  • Dottori, F., Martina, M. L. V., & Figueiredo, R. (2018). A methodology for flood susceptibility and vulnerability analysis in complex flood scenarios. Journal of Flood Risk Management, 11, S632–S645. https://doi.org/10.1111/jfr3.12234.

    Article  Google Scholar 

  • Ergu, D., Kou, G., Peng, Y., & Shi, Y. (2011). A simple method to improve the consistency ratio of the pair-wise comparison matrix in ANP. European Journal of Operational Research, 213(1), 246–259.

    Article  Google Scholar 

  • Falah, F., Rahmati, O., Rostami, M., Ahmadisharaf, E., Daliakopoulos, I. N., & Pourghasemi, H. R. (2019). Artificial Neural Networks for Flood Susceptibility Mapping in Data-Scarce Urban Areas. In H. R. Moradi, M. T. Avand, & S. Janizadeh (Eds.), Spatial Modeling in GIS and R for Earth and Environmental Sciences. (pp. 323–336). Amsterdam: Elseiver.

    Chapter  Google Scholar 

  • Fernández, D. S., & Lutz, M. A. (2010). Urban flood hazard zoning in Tucumán Province, Argentina, using GIS and multicriteria decision analysis. Engineering Geology, 111(1–4), 90–98. https://doi.org/10.1016/j.enggeo.2009.12.006.

    Article  Google Scholar 

  • Ganguly, S., Samanta, A., Schull, M. A., Shabanov, N. V., Milesi, C., Nemani, R. R., et al. (2008). Generating vegetation leaf area index Earth system data record from multiple sensors. Part 2: Implementation, analysis and validation. Remote Sensing of Environment, 112(12), 4318–4332. https://doi.org/10.1016/J.RSE.2008.07.013.

    Article  Google Scholar 

  • GSI. (1999). Geology and Mineral Resources of the States of India, Pt. 1: West Bengal, Misc. Publ., India.

  • Guitouni, A., & Martel, J.-M. (1998). Tentative guidelines to help choosing an appropriate MCDA method. European journal of operational research, 109(2), 501–521.

    Article  Google Scholar 

  • Hagen, E., & Lu, X. X. (2011). Let us create flood hazard maps for developing countries. Natural Hazards, 58(3), 841–843. https://doi.org/10.1007/s11069-011-9750-7.

    Article  Google Scholar 

  • Haghizadeh, A., Siahkamari, S., Haghiabi, A. H., & Rahmati, O. (2017). Forecasting flood-prone areas using Shannon’s entropy model. Journal of Earth System Science. https://doi.org/10.1007/s12040-017-0819-x.

    Article  Google Scholar 

  • Horton, R. E. (1932). Drainage Basin Characteristics. Eos, Transactions American Geophysical Union, 13(1), 350–361. https://doi.org/10.1029/TR013i001p00350.

    Article  Google Scholar 

  • Huang, X., Tan, H., Zhou, J., Yang, T., Benjamin, A., Wen, S. W., et al. (2008). Flood hazard in Hunan province of China: An economic loss analysis. Natural Hazards, 47(1), 65–73. https://doi.org/10.1007/s11069-007-9197-z.

    Article  Google Scholar 

  • Irrigation and Waterways Directorate Govt. of West Bengal. (2016). Annual Flood Report, 2016. Kolkata.

  • Kadam, P., & Sen, D. (2012). Flood inundation simulation in Ajoy River using MIKE-FLOOD. ISH Journal of Hydraulic Engineering, 18(2), 129–141. https://doi.org/10.1080/09715010.2012.695449.

    Article  Google Scholar 

  • Kale, V. S. (2003). The spatio-temporal aspects of monsoon floods in India: Implications for flood hazard management. (pp. 22–47). Universities Press, Hyderabad.

    Google Scholar 

  • Kale, V. S. (2003). Geomorphic effects of monsoon floods on Indian rivers. Natural Hazards, 28(1), 65–84. https://doi.org/10.1023/A:1021121815395.

    Article  Google Scholar 

  • Kale, V. S. (2014). Is flooding in South Asia getting worse and more frequent? Singapore Journal of Tropical Geography, 35(2), 161–178. https://doi.org/10.1111/sjtg.12060.

    Article  Google Scholar 

  • Kanani-Sadat, Y., Arabsheibani, R., Karimipour, F., & Nasseri, M. (2019). A new approach to flood susceptibility assessment in data-scarce and ungauged regions based on GIS-based hybrid multi criteria decision-making method. Journal of Hydrology, 572, 17–31. https://doi.org/10.1016/j.jhydrol.2019.02.034.

    Article  Google Scholar 

  • Khosravi, K., Shahabi, H., Pham, B. T., Adamowski, J., Shirzadi, A., Pradhan, B., et al. (2019). A comparative assessment of flood susceptibility modeling using Multi-Criteria Decision-Making Analysis and Machine Learning Methods. Journal of Hydrology, 573, 311–323. https://doi.org/10.1016/j.jhydrol.2019.03.073.

    Article  Google Scholar 

  • Kourgialas, N. N., & Karatzas, G. P. (2011). Flood management and a GIS modelling method to assess flood-hazard areas—a case study. Hydrological Sciences Journal, 56(2), 212–225. https://doi.org/10.1080/02626667.2011.555836.

    Article  Google Scholar 

  • Kumar, R., & Acharya, P. (2016). Flood hazard and risk assessment of 2014 floods in Kashmir Valley: a space-based multisensor approach. Natural Hazards, 84(1), 437–464. https://doi.org/10.1007/s11069-016-2428-4.

    Article  Google Scholar 

  • Lee, M. J., Kang, J. E., & Jeon, S. (2012). Application of frequency ratio model and validation for predictive flooded area susceptibility mapping using GIS. In International Geoscience and Remote Sensing Symposium (IGARSS) (pp. 895–898). https://doi.org/https://doi.org/10.1109/IGARSS.2012.6351414

  • Lee, S., & Sambath, T. (2006). Landslide susceptibility mapping in the Damrei Romel area, Cambodia using frequency ratio and logistic regression models. Environmental Geology, 50(6), 847–855.

    Article  Google Scholar 

  • Lee, S., Kim, J.-C., Jung, H.-S., Lee, M. J., & Lee, S. (2017). Spatial prediction of flood susceptibility using random-forest and boosted-tree models in Seoul metropolitan city, Korea. Geomatics, Natural Hazards and Risk, 8(2), 1185–1203.

    Article  Google Scholar 

  • Lin, L., Wu, Z., & Liang, Q. (2019). Urban flood susceptibility analysis using a GIS-based multi-criteria analysis framework. Natural Hazards, 97(2), 455–475. https://doi.org/10.1007/s11069-019-03615-2.

    Article  Google Scholar 

  • Ma, Z., Qin, S., Cao, C., Lv, J., Li, G., Qiao, S., & Hu, X. (2019). The influence of different knowledge-driven methods on landslide susceptibility mapping: A case study in the Changbai Mountain Area, Northeast China. Entropy, 21(4). https://doi.org/https://doi.org/10.3390/e21040372

  • Madani, A. A. (2011). Knowledge-driven GIS modeling technique for gold exploration, Bulghah gold mine area, Saudi Arabia. Egyptian Journal of Remote Sensing and Space Science, 14(2), 91–97. https://doi.org/10.1016/j.ejrs.2011.10.001.

    Article  Google Scholar 

  • Malik, S., Chandra Pal, S., Chowdhuri, I., Chakrabortty, R., Roy, P., & Das, B. (2020). Prediction of highly flood prone areas by GIS based heuristic and statistical model in a monsoon dominated region of Bengal Basin. Remote Sensing Applications: Society and Environment, 19, 100343. https://doi.org/10.1016/j.rsase.2020.100343.

    Article  Google Scholar 

  • Malik, S., & Pal, S. C. (2020). Application of 2D numerical simulation for rating curve development and inundation area mapping: a case study of monsoon dominated Dwarkeswar river. International Journal of River Basin Management. https://doi.org/10.1080/15715124.2020.1738447.

    Article  Google Scholar 

  • Malik, S., & Pal, S. C. (2020). Downstream Decreasing Channel Capacity of a Monsoon-dominated Bengal Basin River: A Case Study of Dwarkeswar River. Eastern India. Chinese Geographical Science. https://doi.org/10.1007/s11769-020-1143-y.

    Article  Google Scholar 

  • Malik, S., & Pal, S. C. (2020). Anthropogenic Impact on Channel and Extra-Channel Geomorphology of the Dwarkeswar River Basin. In B. C. Das, S. Ghosh, A. Islam, & S. Roy (Eds.), Anthropogeomorphology of Bhagirathi-Hooghly River System in India. Florida: CRC Press.

    Google Scholar 

  • Malik, S., & Pal, S. C. (2020). Is the topography playing a dual role in controlling downstream channel morphology of a monsoon dominated Dwarkeswar River, Eastern India? HydroResearch, 3, 15–31. https://doi.org/10.1016/j.hydres.2020.04.002.

    Article  Google Scholar 

  • Malik, S., & Pal, S. C. (2021). Potential flood frequency analysis and susceptibility mapping using CMIP5 of MIROC5 and HEC-RAS model: a case study of lower Dwarkeswar River, Eastern India. SN Applied Sciences. https://doi.org/10.1007/s42452-020-04104-z.

    Article  Google Scholar 

  • Malik, S., Pal, S. C., Das, B., & Chakrabortty, R. (2019). Assessment of vegetation status of Sali River basin, a tributary of Damodar River in Bankura District, West Bengal, using satellite data. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-019-00444-y.

    Article  Google Scholar 

  • Malik, S., Pal, S. C., Sattar, A., Singh, S. K., Das, B., Chakrabortty, R., & Mohammad, P. (2020). Trend of extreme rainfall events using suitable Global Circulation Model to combat the water logging condition in Kolkata Metropolitan Area. Urban Climate, 32, 100599. https://doi.org/10.1016/j.uclim.2020.100599.

    Article  Google Scholar 

  • Mandal, S. P., Chakrabarty, A., & Maity, P. (2018). Comparative evaluation of information value and frequency ratio in landslide susceptibility analysis along national highways of Sikkim Himalaya. Spatial Information Research, 26(2), 127–141.

    Article  Google Scholar 

  • Markantonis, V., Meyer, V., & Lienhoop, N. (2013). Evaluation of the environmental impacts of extreme floods in the Evros River basin using Contingent Valuation Method. Natural Hazards, 69(3), 1535–1549. https://doi.org/10.1007/s11069-013-0762-3.

    Article  Google Scholar 

  • Miller, J. R., Ritter, D. F., & Kochel, R. C. (1990). Morphometric assessment of lithologic controls on drainage basin evolution in the Crawford Upland, south-central Indiana. American Journal of Science, 290(5), 569–599. https://doi.org/10.2475/ajs.290.5.569.

    Article  Google Scholar 

  • Mind’je, R., Li, L., Amanambu, A. C., Nahayo, L., Nsengiyumva, J. B., Gasirabo, A., & Mindje, M. (2019). Flood susceptibility modeling and hazard perception in Rwanda. International Journal of Disaster Risk Reduction, 38, 101211. https://doi.org/10.1016/j.ijdrr.2019.101211.

    Article  Google Scholar 

  • Minh, P. T., Tuyet, B. T., Thao, T., & Hang, L. T. (2018). Application of ensemble Kalman filter in WRF model to forecast rainfall on monsoon onset period in South Vietnam. Vietnam Journal of Earth Sciences, 40(4), 367–394. https://doi.org/10.15625/0866-7187/40/4/13134.

    Article  Google Scholar 

  • Mirza, M. M. Q. (2011). Climate change, flooding in South Asia and implications. Regional Environmental Change, 11(S1), 95–107. https://doi.org/10.1007/s10113-010-0184-7.

    Article  Google Scholar 

  • Mohammadi, B., Ahmadi, F., Mehdizadeh, S., Guan, Y., Pham, Q. B., Linh, N. T. T., & Tri, D. Q. (2020). Developing Novel Robust Models to Improve the Accuracy of Daily Streamflow Modeling. Water Resources Management, 34(10), 3387–3409. https://doi.org/10.1007/s11269-020-02619-z.

    Article  Google Scholar 

  • Mohammadi, B., Guan, Y., Aghelpour, P., Emamgholizadeh, S., Zolá, R. P., & Zhang, D. (2020). Simulation of titicaca lake water level fluctuations using hybrid machine learning technique integrated with grey wolf optimizer algorithm. Water (Switzerland), 12(11), 1–18. https://doi.org/10.3390/w12113015.

    Article  Google Scholar 

  • Mohammadi, B., Linh, N. T. T., Pham, Q. B., Ahmed, A. N., Vojteková, J., Guan, Y., et al. (2020). Adaptive neuro-fuzzy inference system coupled with shuffled frog leaping algorithm for predicting river streamflow time series. Hydrological Sciences Journal, 65(10), 1738–1751. https://doi.org/10.1080/02626667.2020.1758703.

    Article  Google Scholar 

  • Mukerji, A., Chatterjee, C., & Raghuwanshi, N. S. (2009). Flood Forecasting Using ANN, Neuro-Fuzzy, and Neuro-GA Models. Journal of Hydrologic Engineering, 14(6), 647–652. https://doi.org/10.1061/(asce)he.1943-5584.0000040.

    Article  Google Scholar 

  • Nachappa, T. G., Piralilou, S. T., Gholamnia, K., Ghorbanzadeh, O., Rahmati, O., & Blaschke, T. (2020). Flood susceptibility mapping with machine learning, multi-criteria decision analysis and ensemble using Dempster Shafer Theory. Journal of Hydrology, 11(1), 2147–2175.

    Google Scholar 

  • Najafzadeh, M., & Zahiri, A. (2015). Neuro-Fuzzy GMDH-Based Evolutionary Algorithms to Predict Flow Discharge in Straight Compound Channels. Journal of Hydrologic Engineering, 20(12), 04015035. https://doi.org/10.1061/(asce)he.1943-5584.0001185.

    Article  Google Scholar 

  • Nandalal, H. K., & Ratnayake, U. R. (2011). Flood risk analysis using fuzzy models. Journal of Flood Risk Management, 4(2), 128–139. https://doi.org/10.1111/j.1753-318X.2011.01097.x.

    Article  Google Scholar 

  • Nandi, A., Mandal, A., Wilson, M., & Smith, D. (2016). Flood hazard mapping in Jamaica using principal component analysis and logistic regression. Environmental Earth Sciences, 75(6), 465.

    Article  Google Scholar 

  • O’Malley, L. S. S. (1995). Bengal District Gazetteers Bankura. . Government of West Bengal.

    Google Scholar 

  • Pal, S. C., Arabameri, A., Blaschke, T., Chowdhuri, I., Saha, A., Chakrabortty, R., et al. (2020). Ensemble of Machine-Learning Methods for Predicting Gully Erosion Susceptibility. Remote Sensing, 12(22), 3675. https://doi.org/10.3390/rs12223675.

    Article  Google Scholar 

  • Pal, S. C., & Chowdhuri, I. (2019). GIS-based spatial prediction of landslide susceptibility using frequency ratio model of Lachung River basin, North Sikkim. India. SN Applied Sciences, 1(5), 1–25. https://doi.org/10.1007/s42452-019-0422-7.

    Article  Google Scholar 

  • Paul, G. C., Saha, S., & Hembram, T. K. (2019). Application of the GIS-Based Probabilistic Models for Mapping the Flood Susceptibility in Bansloi Sub-basin of Ganga-Bhagirathi River and Their Comparison. Remote Sensing in Earth Systems Sciences, 2(2–3), 120–146. https://doi.org/10.1007/s41976-019-00018-6.

    Article  Google Scholar 

  • Pham, B. T., Phong, T. V., Nguyen, H. D., Qi, C., Al-Ansari, N., Amini, A., et al. (2020). A comparative study of kernel logistic regression, radial basis function classifier, multinomial naïve bayes, and logistic model tree for flash flood susceptibility mapping. Water, 12(1), 239.

    Article  Google Scholar 

  • Pourghasemi, H. R., & Beheshtirad, M. (2015). Assessment of a data-driven evidential belief function model and GIS for groundwater potential mapping in the Koohrang Watershed. Iran. Geocarto International, 30(6), 662–685. https://doi.org/10.1080/10106049.2014.966161.

    Article  Google Scholar 

  • Pourghasemi, H. R., & Rahmati, O. (2018). Prediction of the landslide susceptibility: Which algorithm, which precision? CATENA, 162, 177–192. https://doi.org/10.1016/j.catena.2017.11.022.

    Article  Google Scholar 

  • Pradhan, B., & Youssef, A. M. (2011). A 100-year maximum flood susceptibility mapping using integrated hydrological and hydrodynamic models: Kelantan River Corridor. Malaysia. Journal of Flood Risk Management, 4(3), 189–202. https://doi.org/10.1111/j.1753-318X.2011.01103.x.

    Article  Google Scholar 

  • Pulvirenti, L., Pierdicca, N., Chini, M., & Guerriero, L. (2011). An algorithm for operational flood mapping from Synthetic Aperture Radar (SAR) data using fuzzy logic. Natural Hazards and Earth System Sciences, 11(2), 529–540.

    Article  Google Scholar 

  • Rahmati, O., Pourghasemi, H. R., & Zeinivand, H. (2016). Flood susceptibility mapping using frequency ratio and weights-of-evidence models in the Golastan Province. Iran. Geocarto International, 31(1), 42–70. https://doi.org/10.1080/10106049.2015.1041559.

    Article  Google Scholar 

  • Rahmati, O., Zeinivand, H., & Besharat, M. (2016). Flood hazard zoning in Yasooj region, Iran, using GIS and multi-criteria decision analysis. Geomatics, Natural Hazards and Risk, 7(3), 1000–1017. https://doi.org/10.1080/19475705.2015.1045043.

    Article  Google Scholar 

  • Ray, P. K. C., Dimri, S., Lakhera, R. C., & Sati, S. (2007). Fuzzy-based method for landslide hazard assessment in active seismic zone of Himalaya. Landslides, 4(2), 101–111. https://doi.org/10.1007/s10346-006-0068-6.

    Article  Google Scholar 

  • RMSI. (2015). India FloodRisk India’s First Countrywide Flood Risk Model. Retrieved from https://www.rmsi.com/uploads/Services/IndiaFloodRisk_Jan15.pdf.

  • Roy, B., & Vanderpooten, D. (1996). The European school of MCDA: Emergence, basic features and current works. Journal of Multi-Criteria Decision Analysis, 5(1), 22–38.

    Article  Google Scholar 

  • Roy, P., Chandra Pal, S., Chakrabortty, R., Chowdhuri, I., Malik, S., & Das, B. (2020). Threats of climate and land use change on future flood susceptibility. Journal of Cleaner Production, 272, 122757. https://doi.org/10.1016/j.jclepro.2020.122757.

    Article  Google Scholar 

  • Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, 15(3), 234–281. https://doi.org/10.1016/0022-2496(77)90033-5.

    Article  Google Scholar 

  • Saha, A., Pal, S. C., Arabameri, A., Blaschke, T., Panahi, S., Chowdhuri, I., et al. (2021). Flood Susceptibility Assessment Using Novel Ensemble of Hyperpipes and Support Vector Regression Algorithms. Water, 13(2), 241. https://doi.org/10.3390/w13020241.

    Article  Google Scholar 

  • Sahana, M., & Patel, P. P. (2019). A comparison of frequency ratio and fuzzy logic models for flood susceptibility assessment of the lower Kosi River Basin in India. Environmental Earth Sciences. https://doi.org/10.1007/s12665-019-8285-1.

    Article  Google Scholar 

  • Samanta, S., Pal, D. K., & Palsamanta, B. (2018). Flood susceptibility analysis through remote sensing, GIS and frequency ratio model. Applied Water Science, 8(2), 1–14.

    Article  Google Scholar 

  • Shafapour Tehrany, M., Kumar, L., Neamah Jebur, M., & Shabani, F. (2019). Evaluating the application of the statistical index method in flood susceptibility mapping and its comparison with frequency ratio and logistic regression methods. Geomatics, Natural Hazards and Risk, 10(1), 79–101. https://doi.org/10.1080/19475705.2018.1506509.

    Article  Google Scholar 

  • Smith, K. (2013). Environmental Hazards: assessing risk and reducing disaster. (4th ed.). England: Routledge.

    Book  Google Scholar 

  • SOI. (1978). Topographical Map from Survey of India. . Government of India.

    Google Scholar 

  • Solomatine, D. P., & Ostfeld, A. (2008). Data-driven modelling: Some past experiences and new approaches. Journal of Hydroinformatics., 10, 3–22. https://doi.org/10.2166/hydro.2008.015.

    Article  Google Scholar 

  • Souissi, D., Zouhri, L., Hammami, S., Msaddek, M. H., Zghibi, A., & Dlala, M. (2019). GIS-based MCDM–AHP modeling for flood susceptibility mapping of arid areas, southeastern Tunisia. Geocarto International. https://doi.org/10.1080/10106049.2019.1566405.

    Article  Google Scholar 

  • Souissi, D., Zouhri, L., Hammami, S., Msaddek, M. H., Zghibi, A., & Dlala, M. (2020). GIS-based MCDM–AHP modeling for flood susceptibility mapping of arid areas, southeastern Tunisia. Geocarto International, 35(9), 991–1017.

    Article  Google Scholar 

  • Strahler, A. N. (1957). Quantitative analysis of watershed geomorphology. Transactions, American Geophysical Union, 38(6), 913. https://doi.org/10.1029/TR038i006p00913.

    Article  Google Scholar 

  • Swain, K. C., Singha, C., & Nayak, L. (2020). Flood Susceptibility Mapping through the GIS-AHP Technique Using the Cloud. ISPRS International Journal of Geo-Information, 9(12), 720.

    Article  Google Scholar 

  • Tang, X., Li, J., Liu, M., Liu, W., & Hong, H. (2020). Flood susceptibility assessment based on a novel random Naïve Bayes method: A comparison between different factor discretization methods. CATENA, 190, 104536.

    Article  Google Scholar 

  • Tehrany, M. S., & Kumar, L. (2018). The application of a Dempster–Shafer-based evidential belief function in flood susceptibility mapping and comparison with frequency ratio and logistic regression methods. Environmental Earth Sciences. https://doi.org/10.1007/s12665-018-7667-0.

    Article  Google Scholar 

  • Tehrany, M. S., Pradhan, B., & Jebur, M. N. (2014). Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. Journal of Hydrology, 512, 332–343. https://doi.org/10.1016/j.jhydrol.2014.03.008.

    Article  Google Scholar 

  • Tehrany, M. S., Pradhan, B., & Jebur, M. N. (2015). Flood susceptibility analysis and its verification using a novel ensemble support vector machine and frequency ratio method. Stochastic Environmental Research and Risk Assessment, 29(4), 1149–1165. https://doi.org/10.1007/s00477-015-1021-9.

    Article  Google Scholar 

  • Termeh, S. V. R., Kornejady, A., Pourghasemi, H. R., & Keesstra, S. (2018). Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms. Science of the Total Environment, 615, 438–451.

    Article  Google Scholar 

  • Thakur, P., & Chauhan, N. (2018, June). Delhi most vulnerable UT in India’s first disaster risk index Maharashtra Leads States. Times of India, p. Online Publication: https://timesofindia.indiatime. New Delhi.

  • Thokala, P., Devlin, N., Marsh, K., Baltussen, R., Boysen, M., Kalo, Z., et al. (2016). Multiple criteria decision analysis for health care decision making—an introduction: report 1 of the ISPOR MCDA Emerging Good Practices Task Force. Value in health, 19(1), 1–13.

    Article  Google Scholar 

  • Van Balen, R. T., Busschers, F. S., & Tucker, G. E. (2010). Geomorphology Modeling the response of the Rhine – Meuse fl uvial system to Late Pleistocene climate change. Geomorphology, 114(3), 440–452. https://doi.org/10.1016/j.geomorph.2009.08.007.

    Article  Google Scholar 

  • Van Tu, T., Duc, D. M., Tung, N. M., & Cong, V. D. (2016). Preliminary assessments of debris flow hazard in relation to geological environment changes in mountainous regions North Vietnam. Vietnam Journal of Earth Sciences. https://doi.org/10.15625/0866-7187/38/3/8712.

    Article  Google Scholar 

  • Wheater, H., Jakeman, A., & Beven, K. (1993). Progress and directions in rainfall-runoff modelling. . New Jersey: Wiley.

    Google Scholar 

  • WMO. (2018). 2018 Annual Report: WMO for the Twenty-first Century.

  • Yesilnacar, E., & Topal, T. (2005). Landslide susceptibility mapping: A comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Engineering Geology, 79(3–4), 251–266. https://doi.org/10.1016/j.enggeo.2005.02.002.

    Article  Google Scholar 

  • Yilmaz, I. (2010). Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: Conditional probability, logistic regression, artificial neural networks, and support vector machine. Environmental Earth Sciences, 61(4), 821–836. https://doi.org/10.1007/s12665-009-0394-9.

    Article  CAS  Google Scholar 

  • Zadeh, L. (1965). Fuzzy sets. Inf. Control, 8, 253–338.

    Article  Google Scholar 

  • Zahiri, A., & Najafzadeh, M. (2018). Optimized expressions to evaluate the flow discharge in main channels and floodplains using evolutionary computing and model classification. International Journal of River Basin Management, 16(1), 123–132. https://doi.org/10.1080/15715124.2017.1372448.

    Article  Google Scholar 

  • Zheng, X., Maidment, D. R., Tarboton, D. G., Liu, Y. Y., & Passalacqua, P. (2018). GeoFlood: Large-Scale Flood Inundation Mapping Based on High-Resolution Terrain Analysis. Water Resources Research, 54(12), 10013–10033. https://doi.org/10.1029/2018WR023457.

    Article  Google Scholar 

  • Zimmermann, H. (1996). Fuzzy set theory and its applications Kluwer Academic Publishers. . New York: Springer.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

No other author is associated with this work. The authors would also like to thank the Editor and three anonymous reviewers for their encouraging comments.

Corresponding author

Correspondence to Subodh Chandra Pal.

Ethics declarations

Conflict of interest

There is no conflict of interest among the authors regarding this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malik, S., Pal, S.C., Arabameri, A. et al. GIS-based statistical model for the prediction of flood hazard susceptibility. Environ Dev Sustain 23, 16713–16743 (2021). https://doi.org/10.1007/s10668-021-01377-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-021-01377-1

Keywords

Navigation