Skip to main content
Log in

Socioeconomic spillovers of the 2016–2017 Italian earthquakes: a bi-regional inoperability model

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

In August and October 2016, and January 2017, Central Italy was shaken by four strong earthquakes followed by other earthquake swarms. These disruptive phenomena, besides bringing devastation in the territory directly involved, caused economic blackouts to important transactions among activities, with consequent different reactions in the economic performance of the whole country. Therefore, the overall economic impact of a disaster should encompass the complete representation of phenomenon, and requires an analytical framework to depict the circular flow of income in all its phases. In this perspective, the current study presents an evolution of the inoperability input–output model by introducing a new approach of bi-regional inoperability extended multisectoral model. This allows assessing the intra-regional and the inter-regional effects of the earthquakes in the production processes and in the institutional sectors disposable incomes of two Italian macro areas, the North-Centre and the South-Islands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: own graphic elaboration on the dataset provided by ISTAT

Fig. 2

Source: own graphic elaboration on the dataset provided by ISTAT

Fig. 3

Source: own graphic elaboration on the dataset provided by ISTAT

Fig. 4

Source: own graphic elaboration on the dataset provided by ISTAT

Fig. 5

Source: own elaboration

Fig. 6

Source: own elaboration

Fig. 7

Source: own elaboration

Fig. 8

Source: own elaboration

Fig. 9

Source: own elaboration

Fig. 10

Source: own elaboration

Similar content being viewed by others

Notes

  1. The outcomes confirmed the results presented by Koks and Thissen (2016) in the attempt of combining linear programming and I-O modeling to assess indirect impacts with respect to a the natural disaster on a pan-European scale and on Hallegatte (2008) that presents an Adaptive Regional I-O (ARIO) model for assessing the economic cost of Hurricane Katrina.

  2. In a static model, the results are generally negative while in a dynamic approach the outcome of the assessment can bring to positive benefits in other regions, due to an increase in the demand of the imports or for reconstruction needs from the affected regions (Koks and Thissen, 2016).

  3. More recent contributions presenting examples of extended multisectoral models can be found in Socci et al. (2014), Ciaschini et al. (2015), Ahmed et al. (2018a, b) .

  4. The definition of inoperability has been introduced by Jiang (2003) as the inability of the system to perform its intended function.

  5. See also Santos and Haimes (2004) and Leung et al. (2007).

  6. The Northridge Earthquake in 1994 and the Kobe Earthquake in 1995. Since then relevant progress has been made in the impact assessment of earthquakes, see for instance Okuyama et al. (1999), Okuyama (2014), Kajitani et al. (2013), Kajitani and Tatano (2014).

  7. The list of the areas subject to restoration, reconstruction, assistance to the population and economic recovery was presented.

    in the Law n. 229 of December 15th 2016 and updated with the Law n. 45 of April 7th 2017.

  8. The referring dataset Local units and local unit persons employed provided data until municipal level and by 2011 Local labor market area (ISTAT).

  9. It must be noted that the aggregation level for this industry includes several activities involved: I: Accommodation and food service activities, J: 1nformation and communication, L: Real estate activities, M: Professional, scientific and technical activities, N: Administrative and support service activities, H: Arts, entertainment and recreation and S: Other service activities.

  10. Please note that the results in terms of output percentage variation are presented in Table 3 in the Appendix A, where a comparison between the outcome of the B-IEMM and the bi-regional formulation of the IIM (B-IIM) approach is provided.

  11. This industry includes the activities: P: Education and Q: Human health and social work activities.

  12. The percentage share results of the disposable income are shown in Table 2.

References

  • Ahmed, I., Socci, C., Severini, F., Pretaroli, R., & Al-Mahdi, H. K. (2020). Unconventional monetary policy and real estate sector: A financial dynamic computable general equilibrium model for Italy. Economic Systems Research, 32(2), 221–238. https://doi.org/10.1080/09535314.2019.1656601.

    Article  Google Scholar 

  • Ahmed, I., Socci, C., Severini, F., Yasser, Q. R., & Pretaroli, R. (2018a). Financial linkages in the Nigerian economy: An extended multisectoral model on the social accounting matrix. Review of Urban and Regional Development Studies, 30, 89–113.

    Article  Google Scholar 

  • Ahmed, I., Socci, C., Severini, F., Yasser, Q. R., & Pretaroli, R. (2018b). The structures of production, final demand and agricultural output: A macro multipliers analysis of the Nigerian economy. Economia Politica, 35, 691–739.

    Article  Google Scholar 

  • Augustinovics, M. (1970). Methods of international and intertemporal comparison of structure. Contributions to input-output analysis, 1, 249–269.

    Google Scholar 

  • Avelino, A. F. T. (2017). Disaggregating input–output tables in time: The temporal input–output framework. Economic Systems Research, 29(3), 313–334.

    Article  Google Scholar 

  • Bradshaw, S. (2003). Handbook for estimating the socio-economic and environmental effects of disasters. United Nations, ECLAC & International Bank for Reconstruction & Development (The World Bank).

  • Ciaschini, M., El Meligi, A. K., Matei, N. A., Pretaroli, R., & Socci, C. (2015). European structural funds and labor force requirement in Romania. Journal for Economic Forecasting, 4, 134–153.

    Google Scholar 

  • Ciaschini, M., Pretaroli, R., Severini, F., & Socci, C. (2012). Regional double dividend from environmental tax reform: An application for the Italian economy. Research in Economics, 66(3), 273–283.

    Article  Google Scholar 

  • Ciaschini, M., & Socci, C. (2007). Bi-regional sam linkages: A modified backward and forward dispersion approach. Review of Urban & Regional Development Studies, 19(3), 233–254.

    Article  Google Scholar 

  • Cole, S. (1995). Lifelines and livelihood: A social accounting matrix approach to calamity preparedness. Journal of Contingencies and Crisis Management, 3(4), 228–246.

    Article  Google Scholar 

  • Cole, S. (1998). Decision support for calamity preparedness -the socio-economic and inter-regional impacts of an earthquake on electricity lifelines in memphis, tennessee. In M. Shinozuka & A. E. R. Rose (Eds.), Engineering and socioeconomic analysisofaNewMadridEarthquake:ImpactsofelectricitylifelinedisruptionsinMemphisTennessee. (pp. 125–153). National Center for Earthquake Engineering Research.

  • Cole, S. (2004). Geohazards in social systems: An insurance matrix approach. In Y. C. S. Okuyama (Ed.), Modeling spatial and economic impacts of disasters. (pp. 103–118). Springer.

  • Dietzenbacher, E., & Miller, R. E. (2015). Reflections on the inoperability input-output model. Economic Systems Research, 27(4), 1–9.

    Article  Google Scholar 

  • El Meligi, A. K., Ciaschini, M., Ali Khan, Y., Pretaroli, R., Severini, F., & Socci, C. (2019). The inoperability extended multisectoral model and the role of income distribution:AUK case study. Review of Income and Wealth, 65(3), 617–631.

    Article  Google Scholar 

  • Ghosh, A. (1958). Input-output approach in an allocation system. Economica, 25(97), 58–64.

    Article  Google Scholar 

  • Haimes, Y. Y., Horowitz, B. M., Lambert, J. H., Santos, J., Crowther, K., & Lian, C. (2005). Inoperability input-output model for interdependent infrastructure sectors. II: Case studies. Journal of Infrastructure Systems, 11(2), 80–92.

    Article  Google Scholar 

  • Haimes, Y. Y., Horowitz, B. M., Lambert, J. H., Santos, J. R., Lian, C., & Crowther, K. G. (2005). Inoperability input-output model for interdependent infrastructure sectors. I: Theory and methodology. Journal of Infrastructure Systems, 11(2), 67–79.

    Article  Google Scholar 

  • Haimes, Y. Y., & Jiang, P. (2001). Leontief-based model of risk in complex interconnected infrastructures. Journal of Infrastructure systems, 7(1), 1–12.

    Article  Google Scholar 

  • Hallegatte, S. (2008). An adaptive regional input-output model and its application to the assessment of the economic cost of Katrina. Risk Analysis, 28(3), 779–799.

    Article  Google Scholar 

  • Jiang, P. (2003). Input-output inoperability risk model and beyond. Ph.D. thesis, PhD dissertation, Department of Systems and Information Engineering, University of Virginia, Charlottesville, VA.

  • Kajitani, Y., Chang, S. E., & Tatano, H. (2013). Economic impacts of the 2011 Tohoku-Oki earthquake and tsunami. Earthquake Spectra, 29(s1), S457–S478.

    Article  Google Scholar 

  • Kajitani, Y., & Tatano, H. (2014). Estimation of production capacity loss rate after the great east Japan earthquake and tsunami in 2011. Economic Systems Research, 26(1), 13–38.

    Article  Google Scholar 

  • Koks, E. E., & Thissen, M. (2016). A multiregional impact assessment model for disaster analysis. Economic Systems Research, 28(4), 429–449.

    Article  Google Scholar 

  • Leung, M., Haimes, Y. Y., & Santos, J. R. (2007). Supply-and output-side extensions to the inoperability input-output model for interdependent infrastructures. Journal of Infrastructure Systems, 13(4), 299–310.

    Article  Google Scholar 

  • Miller, R., & Blair, P. (1985). Input-Output analysis: Foundations and extensions. Prentice-Hall Inc.

  • Miller, R., & Blair, P. (2009). Input-output analysis: Foundations and extensions. (2nd ed.). Cambridge University Press.

  • Miyazawa, K. (1976). Input–output analysis and the structure of income distribution. Vol. 116 of notes in economics and mathematical systems. Springer.

  • Mohan, P. S., Ouattara, B., & Strobl, E. (2018). Decomposing the macroeconomic effects of natural disasters: A national income accounting perspective. Ecological Economics, 146, 1–9.

    Article  Google Scholar 

  • Mortreux, C., Campos, R. S., Adger, W. N., Ghosh, T., Das, S., Adams, H., & Hazra, S. (2018). Political economy of planned relocation: A model of action and inaction in government responses. Global Environmental Change, 50, 123–132.

    Article  Google Scholar 

  • Okuyama, Y. (2007). Economic modeling for disaster impact analysis: Past, present, and future. Economic Systems Research, 19(2), 115–124.

    Article  Google Scholar 

  • Okuyama, Y. (2014). Disaster and economic structural change: Case study on the 1995 Kobe earthquake. Economic Systems Research, 26(1), 98–117.

    Article  Google Scholar 

  • Okuyama, Y. (2017). Revisiting the Sequential Inter industry Model (SIM): Linkages and inventory. In: Paper presented at the 25th international input-output conference. Atlantic City.

  • Okuyama, Y., Sahin, S. (2009). Impact estimation of disasters: A global aggregate for 1960–2007. World Bank Policy Research Working Paper 4963.

  • Okuyama, Y., Sonis, M., & Hewings, G. J. (1999). Economic impacts of an unscheduled, disruptive event: A Miyazawa multiplier analysis. In G. J. D. Hewings, M. Sonis, M. Madden, & Y. Kimura (Eds.), Understanding and interpreting economic structure. (pp. 113–143). Springer.

  • Oosterhaven, J. (2017). On the limited usability of the inoperability IO model. Economic Systems Research, 29(3), 452–461.

    Article  Google Scholar 

  • Oosterhaven, J., & Többen, J. (2017). Wider economic impacts of heavy flooding in Germany: A non-linear programming approach. Spatial Economic Analysis, 12(4), 404–428.

    Article  Google Scholar 

  • Pyatt, G., & Round, J. I. (1979). Accounting and fixed price multipliers in a social accounting matrix framework. The Economic Journal, 89(356), 850–873.

    Article  Google Scholar 

  • Rose, A. (2004). Economic principles, issues, and research priorities in hazard loss estimation. In Y. Okuyama & S. E. Chang (Eds.), Modeling spatial and economic impacts of disasters. Advances in Spatial Science. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-540-24787-6_2.

    Chapter  Google Scholar 

  • Rose, A., & Wei, D. (2013). Estimating the economic consequences of a port shutdown: The special role of resilience. Economic Systems Research, 25(2), 212–232.

    Article  Google Scholar 

  • Santos, J. R. (2003). Interdependency analysis: Extensions to demand reduction inoperability input-output modeling and portfolio selection. Ph.D. thesis, University of Virginia.

  • Santos, J. R., & Haimes, Y. Y. (2004). Modeling the demand reduction input-output (I–O) inoperability due to terrorism of interconnected infrastructures. Risk Analysis, 24(6), 1437–1451.

    Article  Google Scholar 

  • Socci, C. (200)4. Distribuzione del reddito e analisi delle politiche economiche per la regione Marche. A. Giuffre.

  • Socci, C., Ciaschini, M., & El Meligi, A. K. (2014). CO2 emissions and value added change: Assessing the trade-off through the macro multiplier approach. Economics and Policy of Energy and the Environment, 2, 47–54.

    Google Scholar 

  • Yamamura, E. (2010). Effects of interactions among social capital, income and learning from experiences of natural disasters: A case study from Japan. Regional Studies, 44(8), 1019–1032.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irfan Ahmed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

See Fig. 11.

Fig. 11
figure 11

Source: own elaboration

The bi-regional circular flow of income.

Table 3 shows a comparison between the results of the B-IEMM and the B-IIM approach in order to underline advantages and limitations of the two methodologies.

Table 3 Output performance: B-IEMM versus B-IIM (in percentage variation)

Appendix 2: The bi-regional extended multisectorial model approach

Considering an open economic system with b Industries, n Primary factors and h institutional sectors, the main equation of the model can be introduced.

$$\left\{ {\frac{{m^{\rm SI} }}{{m^{\rm NC} }}} \right\} + \left\{ {\frac{{x^{\rm SI} }}{{x^{\rm NC} }}} \right\} = \left\{ {\frac{{r^{\rm SI} }}{{r^{\rm NC} }}} \right\} + \left\{ {\frac{{f_{d}^{\rm SI} }}{{f_{d}^{\rm NC} }}} \right\}$$
(12)

This structural form better describes the bi-regional dimension of the model where each variables is divided by the two areas, South-Islands (SI) and North-Centre (NC). Equation 12 variables represent the imports vector m, the domestic industry output x, the vector of the total intermediate consumption r and the final demand vector fd composed by an endogenous and an exogenous part, fd = fc + f0.

$$\left\{ {\frac{{x^{\rm SI} }}{{x^{\rm NC} }}} \right\} = \left\{ {\frac{{r^{\rm SI} }}{{r^{\rm NC} }}} \right\} + \left\{ {\frac{{f_{c}^{\rm SI} }}{{f_{c}^{\rm NC} }}} \right\} + \left\{ {\frac{{f_{0}^{\rm SI} }}{{f_{0}^{\rm NC} }}} \right\} - \left\{ {\frac{{m^{\rm SI} }}{{m^{\rm NC} }}} \right\}$$
(13)

Equation 14 shows how the intermediate consumption vector r is given by the product of the technical coefficients matrix A[b, b] and the industry output vector x.

$$\left\{ {\frac{{r^{\rm SI} }}{{r^{\rm NC} }}} \right\} = \left\{ {\frac{{A^{{\rm SI},{\rm SI}} }}{{A^{{\rm NC},{\rm SI}} }}|\frac{{A^{{\rm SI},{\rm NC}} }}{{A^{{\rm NC},{\rm NC}} }}} \right\}\left\{ {\frac{{x^{\rm SI} }}{{x^{\rm NC} }}} \right\}$$
(14)

The net exports vector f can now be defined as,

$$\left\{ {\frac{{f^{\rm SI} }}{{f^{\rm NC} }}} \right\} = \left\{ {\frac{{f_{0}^{\rm SI} }}{{f_{0}^{\rm NC} }}} \right\} - \left\{ {\frac{{m^{\rm SI} }}{{m^{\rm NC} }}} \right\}$$
(15)

Replacing Eqs. 14 and 15 in Eq. 13, the bi-regional extended multisectoral model can also be expressed as follows.

$$\left\{ {\frac{{x^{\rm SI} }}{{x^{\rm NC} }}} \right\} = \left\{ {\frac{{A^{{\rm SI},{\rm SI}} }}{{A^{{\rm NC},{\rm SI}} }}|\frac{{A^{{\rm SI},{\rm NC}} }}{{A^{{\rm NC},{\rm NC}} }}} \right\}\left\{ {\frac{{x^{\rm SI} }}{{x^{\rm NC} }}} \right\} + \left\{ {\frac{{f_{c}^{\rm SI} }}{{f_{c}^{\rm NC} }}} \right\} + \left\{ {\frac{{f^{\rm SI} }}{{f^{\rm NC} }}} \right\}$$
(16)

The value added by industry can be defined as

$$\left\{ {\frac{{v_{io}^{\rm SI} }}{{v_{io}^{\rm NC} }}} \right\} = \left\{ {\frac{{L^{\rm SI} }}{0}|\frac{0}{{L^{\rm NC} }}} \right\}\left\{ {\frac{{x^{\rm SI} }}{{x^{\rm NC} }}} \right\}$$
(17)

with L[b, b] being a diagonal matrix and \(l_{j} = 1 - { }\mathop \sum \limits_{i = 1}^{n} a_{ij}\). In order to obtain the value added by its components vc can be introduced as follows

$$\left\{ {\frac{{v_{c}^{\rm SI} }}{{v_{c}^{\rm NC} }}} \right\} = \left\{ {\frac{{W^{{\rm SI},{\rm SI}} }}{{W^{{\rm NC},{\rm SI}} }}|\frac{{W^{{\rm SI},{\rm NC}} }}{{W^{{\rm NC},{\rm NC}} }}} \right\} \left\{ {\frac{{v_{io}^{\rm SI} }}{{v_{io}^{\rm NC} }}} \right\}$$
(18)

, where W[n, b] represents a matrix of shares of Primary factors.

The value added by Institutional sector vis is given by

$$\left\{ {\frac{{v_{is}^{\rm SI} }}{{v_{is}^{\rm NC} }}} \right\} = \left\{ {\frac{{P^{\rm SI} }}{0}|\frac{0}{{P^{\rm NC} }}} \right\} \left\{ {\frac{{v_{c}^{\rm SI} }}{{v_{c}^{\rm NC} }}} \right\}$$
(19)

with P[h, n] being a shares matrix of the distribution of primary income that contributes in determining the disposable income through the inter-regional and intra-regional transfer flows. Having finalized the first phase regarding the circular flow of income, the disposable income vector can now be reconstructed.

$$\left\{ {\frac{{y^{\rm SI} }}{{y^{\rm NC} }}} \right\} = \left[ {\left\{ {\frac{{I_{1} }}{0}|\frac{0}{{I_{2} }}} \right\} + \left\{ {\frac{{T^{{\rm SI},{\rm SI}} }}{{T^{{\rm NC},{\rm SI}} }}|\frac{{T^{{\rm SI},{\rm NC}} }}{{T^{{\rm NC},{\rm NC}} }}} \right\} \left\{ {\frac{{v_{is}^{\rm SI} }}{{v_{is}^{\rm NC} }}} \right\}} \right]$$
(20)

The matrix T[h, h] represents the shares of the net transfers between the institutional sectors in the secondary distribution of income.

$$\left\{ {\frac{{D^{{\rm SI},{\rm SI}} }}{{D^{{\rm NC},{\rm SI}} }}|\frac{{D^{{\rm SI},{\rm NC}} }}{{D^{{\rm NC},{\rm NC}} }}} \right\} = \left[ {\left\{ {\frac{{I_{1} }}{0}|\frac{0}{{I_{2} }}} \right\} + \left\{ {\frac{{T^{{\rm SI},{\rm SI}} }}{{T^{{\rm NC},{\rm SI}} }}|\frac{{T^{{\rm SI},{\rm NC}} }}{{T^{{\rm NC},{\rm NC}} }}} \right\}} \right]\left\{ {\frac{{P^{\rm SI} }}{0}|\frac{0}{{P^{\rm NC} }}} \right\} \left\{ {\frac{{W^{{\rm SI},{\rm SI}} }}{{W^{{\rm NC},{\rm SI}} }}|\frac{{W^{{\rm SI},{\rm NC}} }}{{W^{{\rm NC},{\rm NC}} }}} \right\} \left\{ {\frac{{L^{\rm SI} }}{0}|\frac{0}{{L^{\rm NC} }}} \right\}$$
(21)

Introducing D[h, h] as the product of the previous structural matrices and substituting it in the disposable income Eq. 20, the vector y can also be expressed as

$$\left\{ {\frac{{y^{\rm SI} }}{{y^{\rm NC} }}} \right\} = \left\{ {\frac{{D^{{\rm SI},{\rm SI}} }}{{D^{{\rm NC},{\rm SI}} }}|\frac{{D^{{\rm SI},{\rm NC}} }}{{D^{{\rm NC},{\rm NC}} }}} \right\} \left\{ {\frac{{x^{\rm SI} }}{{x^{\rm NC} }}} \right\}$$
(22)

The closing of the circular flow of income loop has been obtained through the construction of the endogenous final demand vector fc,

$$\left\{ {\frac{{f_{c}^{\rm SI} }}{{f_{c}^{\rm NC} }}} \right\} = \left\{ {\frac{{G^{{\rm SI},{\rm SI}} }}{{G^{{\rm NC},{\rm SI}} }}|\frac{{G^{{\rm SI},{\rm NC}} }}{{G^{{\rm NC},{\rm NC}} }}} \right\} \left\{ {\frac{{y^{\rm SI} }}{{y^{\rm NC} }}} \right\}$$
(23)

, where G can be decomposed in

$$\left\{ {\frac{{G^{{\rm SI},{\rm SI}} }}{{G^{{\rm NC},{\rm SI}} }}|\frac{{G^{{\rm SI},{\rm NC}} }}{{G^{{\rm NC},{\rm NC}} }}} \right\} = \left\{ {\frac{{F^{{\rm SI},{\rm SI}} }}{{F^{{\rm NC},{\rm SI}} }}|\frac{{F^{{\rm SI},{\rm NC}} }}{{F^{{\rm NC},{\rm NC}} }}} \right\}\left\{ {\frac{{K^{{\rm SI},{\rm SI}} }}{{K^{{\rm NC},{\rm SI}} }}|\frac{{K^{{\rm SI},{\rm NC}} }}{{K^{{\rm NC},{\rm NC}} }}} \right\}$$
(24)

Here, the matrix F = F1C, is composed by F1[b, h] which transforms the consumption by Institutional sector into consumption by I–O, meanwhile each element of the diagonal matrix C[h, h] represents the propensity of consumption by Institutional sector.

$$\left\{ {\frac{{F^{{\rm SI},{\rm SI}} }}{{F^{{\rm NC},{\rm SI}} }}|\frac{{F^{{\rm SI},{\rm NC}} }}{{F^{{\rm NC},{\rm NC}} }}} \right\} = \left\{ {\frac{{F1^{{\rm SI},{\rm SI}} }}{{F1^{{\rm NC},{\rm SI}} }}|\frac{{F1^{{\rm SI},{\rm NC}} }}{{F1^{{\rm NC},{\rm NC}} }}} \right\}\left\{ {\frac{{C^{\rm SI} }}{0}|\frac{0}{{C^{\rm NC} }}} \right\}$$
(25)

The matrix K can be rewritten as K1s(I−C), where K1[b, h] represents the matrix that transforms the gross investment by Institutional sector into I–O, the scalar s resumes the "active saving" and I−C captures the saving propensity by Institutional sector.

$$\left\{ {\frac{{K^{{\rm SI},{\rm SI}} }}{{K^{{\rm NC},{\rm SI}} }}|\frac{{K^{{\rm SI},{\rm NC}} }}{{K^{{\rm NC},{\rm NC}} }}} \right\} = \left\{ {\frac{{K1^{{\rm SI},{\rm SI}} }}{{K1^{{\rm NC},{\rm SI}} }}|\frac{{K1^{{\rm SI},{\rm NC}} }}{{K1^{{\rm NC},{\rm NC}} }}} \right\}s\left[ {\left\{ {\frac{{I_{1} }}{0}|\frac{0}{{I_{2} }}} \right\} - \left\{ {\frac{{C^{\rm SI} }}{0}|\frac{0}{{C^{\rm NC} }}} \right\} } \right]$$
(26)

After making the required substitutions, the endogenous final demand formation vector fc can therefore be expressed as

$$\left\{ {\frac{{f_{c}^{\rm SI} }}{{f_{c}^{\rm NC} }}} \right\} = \left\{ {\frac{{G^{{\rm SI},{\rm SI}} }}{{G^{{\rm NC},{\rm SI}} }}|\frac{{G^{{\rm SI},{\rm NC}} }}{{G^{{\rm NC},{\rm NC}} }}} \right\}\left\{ {\frac{{D^{{\rm SI},{\rm SI}} }}{{D^{{\rm NC},{\rm SI}} }}|\frac{{D^{{\rm SI},{\rm NC}} }}{{D^{{\rm NC},{\rm NC}} }}} \right\} \left\{ {\frac{{x^{\rm SI} }}{{x^{\rm NC} }}} \right\}$$
(27)

By defining and replacing E as E = GD in Eq. 27, and substituting in Eq. 16, the structural form of the bi-regional extended multisectoral model can be obtained.

$$\left\{ {\frac{{x^{\rm SI} }}{{x^{\rm NC} }}} \right\} = \left\{ {\frac{{A^{{\rm SI},{\rm SI}} }}{{A^{{\rm NC},{\rm SI}} }}|\frac{{A^{{\rm SI},{\rm NC}} }}{{A^{{\rm NC},{\rm NC}} }}} \right\}\left\{ {\frac{{x^{\rm SI} }}{{x^{\rm NC} }}} \right\} + \left\{ {\frac{{E^{{\rm SI},{\rm SI}} }}{{E^{{\rm NC},{\rm SI}} }}|\frac{{E^{{\rm SI},{\rm NC}} }}{{E^{{\rm NC},{\rm NC}} }}} \right\} \left\{ {\frac{{x^{\rm SI} }}{{x^{\rm NC} }}} \right\}\left\{ {\frac{{f^{\rm SI} }}{{f^{\rm NC} }}} \right\}$$
(28)

Alternatively, Eq. 28, can be defined in its reduced form.

$$\left\{ {\frac{{x^{\rm SI} }}{{x^{\rm NC} }}} \right\} = \left[ {\left\{ {\frac{{I_{1} }}{0}|\frac{0}{{I_{2} }}} \right\} - \left\{ {\frac{{A^{{\rm SI},{\rm SI}} }}{{A^{{\rm NC},{\rm SI}} }}|\frac{{A^{{\rm SI},{\rm NC}} }}{{A^{{\rm NC},{\rm NC}} }}} \right\} - \left\{ {\frac{{E^{{\rm SI},{\rm SI}} }}{{E^{{\rm NC},{\rm SI}} }}|\frac{{E^{{\rm SI},{\rm NC}} }}{{E^{{\rm NC},{\rm NC}} }}} \right\}} \right]^{ - 1} \left\{ {\frac{{f^{\rm SI} }}{{f^{\rm NC} }}} \right\}$$
(29)

The model for the disposable income, at this point, can be solved.

$$\left\{ {\frac{{D^{{\rm SI},{\rm SI}} }}{{D^{{\rm NC},{\rm SI}} }}|\frac{{D^{{\rm SI},{\rm NC}} }}{{D^{{\rm NC},{\rm NC}} }}} \right\} \left\{ {\frac{{x^{\rm SI} }}{{x^{\rm NC} }}} \right\} = \left\{ {\frac{{D^{{\rm SI},{\rm SI}} }}{{D^{{\rm NC},{\rm SI}} }}|\frac{{D^{{\rm SI},{\rm NC}} }}{{D^{{\rm NC},{\rm NC}} }}} \right\} \left[ {\left\{ {\frac{{I_{1} }}{0}|\frac{0}{{I_{2} }}} \right\} - \left\{ {\frac{{A^{{\rm SI},{\rm SI}} }}{{A^{{\rm NC},{\rm SI}} }}|\frac{{A^{{\rm SI},{\rm NC}} }}{{A^{{\rm NC},{\rm NC}} }}} \right\} - \left\{ {\frac{{E^{{\rm SI},{\rm SI}} }}{{E^{{\rm NC},{\rm SI}} }}|\frac{{E^{{\rm SI},{\rm NC}} }}{{E^{{\rm NC},{\rm NC}} }}} \right\}} \right]^{ - 1} \left\{ {\frac{{f^{\rm SI} }}{{f^{\rm NC} }}} \right\}$$
(30)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, I., Socci, C., Pretaroli, R. et al. Socioeconomic spillovers of the 2016–2017 Italian earthquakes: a bi-regional inoperability model. Environ Dev Sustain 24, 426–453 (2022). https://doi.org/10.1007/s10668-021-01446-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-021-01446-5

Keywords

JEL classification

Navigation