Skip to main content

Advertisement

Log in

Experimental, computational analysis of Butein and Lanceoletin for natural dye-sensitized solar cells and stabilizing efficiency by IoT

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

The thoughtful implementation of Internet of Things (IoT) expertise to sustainable progress in environment friendly renewable energy sector is significant for future energy conversion, storage and usage. The exploration of IoT proficiency in restoring the fresh condition of natural dye-sensitized solar cells once again by refilling the photo-sensitizer from its dye-degraded condition is conceived. This concept will eliminate one of the key limitations of dye-sensitized solar cells in real-world application. Potential environment friendly organic dyes were separated from the Butea Monosperma petals and employed for proficient titanium dioxide (TiO2) photo-anodes. Butein and Lanceoletin are prominent colorants existent in the organic source (Butea Monosperma petals) and enhanced molecular structures premeditated. The colorant-sensitized TiO2 NPs underwent the structural, photosensitive, spectral and IV (current–voltage) readings. Comparative DFT (density functional theoretical) and experimental studies on the spectroscopic, electronic and nonlinear opto-response characteristics of Butein and Lanceoletin were performed. The change in HOMO–LUMO energy which governs kinetic steadiness, chemical reactivity, chemical softness, hardness and MEP (molecular electrostatic potential) of molecules has been intended at B3LYP@6-311G (d, p). Environment friendly, price-effective NDSSCs were made by using organic photo-anodes.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agarkar, S. A., Kulkarni, R. R., Dhas, V. V., Chinchansure, A. A., Hazra, P., Joshi, S. P., & Ogale, S. B. (2011). Isobutrin from Butea Monosperma (Flame of the Forest): A promising new natural sensitizer belonging to chalcone class. ACS Applied Materials & Interfaces, 3(7), 2440–2444. https://doi.org/10.1021/am200341y

    Article  CAS  Google Scholar 

  • Amogne, N. Y., Ayele, D. W., & Tsigie, Y. A. (2020). Recent advances in anthocyanin dyes extracted from plants for dye sensitized solar cell. Mater Renew Sustain Energy, 9, 23. https://doi.org/10.1007/s40243-020-00183-5

    Article  Google Scholar 

  • Ananth, S., Arumanayagam, T., Vivek, P., & Murugakoothan, P. (2014b). Enhanced photovoltaic behavior of dye sensitized solar cells fabricated using pre dye treated titanium dioxide nanoparticles. Journal of Materials Science: Materials in Electronics, 27(1), 146–153. https://doi.org/10.1007/s10854-015-3730-8

    Article  CAS  Google Scholar 

  • Ananth, S., Vivek, P., Arumanayagam, T., & Murugakoothan, P. (2014a). Natural dye extract of lawsonia inermis seed as photo sensitizer for titanium dioxide based dye sensitized solar cells. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 128, 420–426. https://doi.org/10.1016/j.saa.2014.02.169

    Article  CAS  Google Scholar 

  • Ananth, S., Vivek, P., Arumanayagam, T., & Murugakoothan, P. (2015b). Pre dye treated titanium dioxide nanoparticles synthesized by modified sol–gel method for efficient dye-sensitized solar cells. Applied Physics A, 119, 989–995. https://doi.org/10.1007/s00339-015-9055-x

    Article  CAS  Google Scholar 

  • Ananth, S., Vivek, P., Solaiyammal, T., & Murugakoothan, P. (2015a). Pre dye treated titanium dioxide nano particles sensitized by natural dye extracts of Pterocarpus marsupium for dye sensitized solar cells. Optik, 126(9), 1027–1031. https://doi.org/10.1016/j.ijleo.2015.02.066

    Article  CAS  Google Scholar 

  • Ananthakumar, S., Balaji, D., Ram Kumar, J., et al. (2019). Role of co-sensitization in dye-sensitized and quantum dot-sensitized solar cells. SN Applied Sciences, 1, 186. https://doi.org/10.1007/s42452-018-0054-3

    Article  CAS  Google Scholar 

  • Araújo, L. K. F., Albuquerque, A. A., Ramos, W. C. O., et al. (2021). Elaeis guineensis-activated carbon for methylene blue removal: Adsorption capacity and optimization using CCD-RSM. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-020-01137-7

    Article  Google Scholar 

  • Aslam, A., Mehmood, U., Arshad, M. H., Ishfaq, A., Zaheer, J., Khan, A. U. H., & Sufyan, M. (2020). Dye-sensitized solar cells (DSSCs) as a potential photovoltaic technology for the self-powered internet of things (IoTs) applications. Solar Energy, 207, 874–892. https://doi.org/10.1016/j.solener.2020.07.029

    Article  CAS  Google Scholar 

  • Balakrishnan, N., & Rajendran, A. (2020). Computing WHERE-WHAT classification through FLIKM and deep learning algorithms. Advances in Electrical and Computer Technologies., 672, 593–608. https://doi.org/10.1007/978-981-15-5558-9_52

    Article  Google Scholar 

  • Bredas, J. L. (2014). Mind the gap. Materials Horizons, 1, 17–19. https://doi.org/10.1039/C3MH00098B

    Article  CAS  Google Scholar 

  • Chawla, P., Sharma, S. K., & Toor, A. P. (2020). Techno-economic evaluation of anatase and p25 TiO2 for treatment basic yellow 28 dye solution through heterogeneous photocatalysis. Environment, Development and Sustainability, 22, 231–249. https://doi.org/10.1007/s10668-018-0194-z

    Article  Google Scholar 

  • Dhawan, S., Chakraborty, C., Frnda, J., Gupta, R., Rana, A. K., & Pani, S. K. (2021). SSII: Secured and high-quality steganography using intelligent hybrid optimization algorithms for IoT. IEEE Access. https://doi.org/10.1109/ACCESS.2021.3089357

    Article  Google Scholar 

  • Diab, H. M., Hassan, W. M., Abdelhamid, I. A., & Elwahy, A. H. (2019). J, Experimental and theoretical study on the regioselective synthesis and reaction of some bis- and poly(3-mercapto-1,2,4-triazin-5(4H)-one) derivatives. Journal of Molecular Structure, 1197, 244. https://doi.org/10.1016/j.molstruc.2019.07.047

    Article  CAS  Google Scholar 

  • Frisch. G. W. T. M. J, Schlegel. H. B, Scuseria G. E, Robb. M. A, Cheeseman. J. R, Montgomery. J. A, Jr., Vreven. T, Kudin. K. N, Burant. J.C, Millam. J. M, Iyengar. S.S, Tomasi. J, Barone. V, Mennucci. B, Cossi. M, Scalmani. G, Rega. N, Petersson. G. A, Nakatsuji. H, Hada. M, Ehara. M, Toyota. K, Fukuda. R, Hasegawa. J, Ishida. M, Nakajima. T, Honda. Y, Kitao. O, Nakai. H, Klene. M, Li. X, Knox. J. E, Hratchian. H. P, Cross. J. B, Adamo. C, Jaramillo. J, Gomperts. R, Stratmann. R. E, Yazyev. O, Austin. A. J, Cammi. R, Pomelli. C, Ochterski. J. W, Ayala. P. Y, Morokuma. K, Voth. G. A, Salvador. P, Dannenberg. J. J, Zakrzewski. V. G, Dapprich. S, Daniels. A. D, Strain. M.C, Farkas. O, Malick. D. K, Rabuck. A. D, Raghavachari. K, Foresman. J. B, Ortiz. J. V, Cui. Q, Baboul. A. G, Clifford. S, Cioslowski. J, Stefanov. B. B, Liu. G, Liashenko. A, Piskorz. P, Komaromi. I, Martin. R. L, Fox. D. J, Keith. T, Al-Laham. M. A, Peng. C. Y, Nanayakkara. A, Challacombe. M, Gill. P. M. W, Johnson. B, Chen. W, Wong. M. W, Gonzalez. C, Pople. J. A, Gaussian09, Revision A, Inc., Wallingford CT, (2009)

  • Frisch, A., Dennington, R., Keith, T., Millam, J., Nielsen, A., Holder, A., & Hiscocks, J. (2009b). Gauss view version 5 user manual. Gaussian Inc.

    Google Scholar 

  • Geerlings, P., De Proft, F., & Langenaeker, W. (2003). Conceptual density functional theory. Chemical Reviews, 103, 1793–1874. https://doi.org/10.1021/cr990029p

    Article  CAS  Google Scholar 

  • Grätzel, M. (2001). Sol-Gel processed TiO2 films for photovoltaic applications. Journal of Sol-Gel Science and Technology, 22, 7–13. https://doi.org/10.1023/A:1011273700573

    Article  Google Scholar 

  • Hiremath, S. M., Suvitha, A., Patil, N. R., Hiremath, C. S., Khemalapure, S. S., Pattanayak, S. K., Negalurmath, V. S., & Obelannavar, K. (2018). Molecular structure, vibrational spectra, NMR, UV, NBO, NLO, HOMO-LUMO and molecular docking of 2-(4, 6-dimethyl-1-benzofuran-3-yl) acetic acid (2DBAA): Experimental and theoretical approach. Journal of Molecular Structure, 1171, 362–374. https://doi.org/10.1016/j.molstruc.2018.05.109

    Article  CAS  Google Scholar 

  • Hohenberg, P., & Kohn, W. (1964). Inhomogeneous electron gas. Physical Review, 136, B864. https://doi.org/10.1103/PhysRev.136.B864

    Article  Google Scholar 

  • Karad, S., & Thakur, R. (2021). Efficient monitoring and control of wind energy conversion systems using Internet of things (IoT): A comprehensive review. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-021-01267-6

    Article  Google Scholar 

  • Keyikoglu, R., & Can, O. T. (2021). The role of dye molecular weight on the decolorization performance of the electrocoagulation. Environment, Development and Sustainability, 23, 3917–3928. https://doi.org/10.1007/s10668-020-00749-3

    Article  Google Scholar 

  • Khamparia, S., & Jaspal, D. K. (2017). Evaluation of decoloration potential of Xanthium Strumarium seed hull for adsorption of direct red 81 in aqueous solution. Environment, Development and Sustainability, 19, 1933–1951. https://doi.org/10.1007/s10668-016-9836-1

    Article  Google Scholar 

  • Khamrang, T., Velusamy, M., Ramesh, M., Jhonsi, M. A., Jaccob, M., Ramasubramanian, K., & Kathiravan, A. (2020). IoT-enabled dye-sensitized solar cells: An effective embedded tool for monitoring the outdoor device performance. RSC Advances, 10, 35787. https://doi.org/10.1039/d0ra07353a

    Article  CAS  Google Scholar 

  • Kumar, J. C. R., & Majid, M. A. (2020). Renewable energy for sustainable development in India: current status, future prospects, challenges, employment, and investment opportunities. Energy Sustainability and Society. https://doi.org/10.1186/s13705-019-0232-1

    Article  Google Scholar 

  • Liu, S. B. (2009). Conceptual density functional theory and some recent developments. Acta Physico-Chimica Sinica, 25, 590–600. https://doi.org/10.3866/PKU.WHXB20090332

    Article  CAS  Google Scholar 

  • Marizcurrena, J. J., Castro-Sowinski, S., & Cerdá, M. F. (2021). Improving the performance of dye-sensitized solar cells using nanoparticles and a dye produced by an Antarctic bacterium. Environmental Sustainability. https://doi.org/10.1007/s42398-021-00168-8

    Article  Google Scholar 

  • Michaels, H., Rinderle, M., Freitag, Ri., Benesperi, L., Edvinsson, T., Socher, R., Gagliardi, A., & Freitag, M. (2020). Dye-sensitized solar cells under ambient light powering machine learning: Towards autonomous smart sensors for the internet of things. Chemical Science, 11, 2895. https://doi.org/10.1039/c9sc06145

    Article  CAS  Google Scholar 

  • Mohiyuddin, A., Javed, A. R., Chakraborty, C., Rizwan, M., Shabbir, M., & Nebhen, J. (2021). Secure cloud storage for medical IoT data using adaptive neuro-fuzzy inference system. International Journal of Fuzzy System. https://doi.org/10.1007/s40815-021-01104-y

    Article  Google Scholar 

  • Montagni, T., Enciso, P., Marizcurrena, J. J., et al. (2018). Dye sensitized solar cells based on Antarctic Hymenobacter sp. UV11 dyes. Environmental Sustainability, 1, 89–97. https://doi.org/10.1007/s42398-018-0007-1

    Article  Google Scholar 

  • Murugakoothan, P., Ananth, S., Vivek, P., & Arumanayagam, T. (2014). Natural dye extracts of areca catechu nut as dye sensitizer for titanium dioxide based dye sensitized solar cells. Journal of Nano Electronic Physics, 6(1), 01003.

    CAS  Google Scholar 

  • Nagaraj, B., Arunkumar, R., Nisi, K., et al. (2020). Enhancement of fraternal K-median algorithm with CNN for high dropout probabilities to evolve optimal time-complexity. Cluster Computing, 23, 2001–2008. https://doi.org/10.1007/s10586-019-02963-9

    Article  Google Scholar 

  • O’Boyle, N. M., Tenderholt, A. L., & Langner, K. M. (2008). cclib: A library for package-independent computational chemistry algorithms. Journal of Computational Chemistry, 29, 839–845. https://doi.org/10.1002/jcc.20823

    Article  CAS  Google Scholar 

  • Prabavathy, N., Balasundaraprabhu, R., Arne, S., Kristoffersen, B. G., Prasanna, S., Sivakumaran, K., Kannan, M. D., Erga, S. R., & Velauthapillai, D. (2021). Enhanced photostability of anthocyanin dye for increased efficiency in natural dye sensitized solar cells. Optik, 227, 166053. https://doi.org/10.1016/j.ijleo.2020.166053

    Article  CAS  Google Scholar 

  • Prima, E. C., Nugroho, H. S., Nugrahab, G. R., Panatarani, C., & Yuliarto, B. (2020). Performance of the dye-sensitized quasi-solid state solar cell with combined anthocyanin-ruthenium photosensitizer. RSC Advances, 10, 36873–36886. https://doi.org/10.1039/D0RA06550A

    Article  CAS  Google Scholar 

  • Psomopoulos, C. S. (2013). Solar energy: Harvesting the sun’s energy for sustainable Future. In J. Kauffman & K. M. Lee (Eds.), Handbook of sustainable engineering (pp. 1065–1107). Dordrecht: Springer. https://doi.org/10.1007/978-1-4020-8939-8_117

    Chapter  Google Scholar 

  • Rai, A., Pandey, V. C., Singh, A. K., et al. (2020). Butea monosperma: A leguminous species for sustainable forestry programmes. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-020-00977-7

    Article  Google Scholar 

  • Rekha, M., Kowsalya, M., Ananth, S., Vivek, P., & Jauhar, R. O. M. U. (2019). Current–voltage characteristics of new organic natural dye extracted from Terminalia chebula for dye-sensitized solar cell applications. Journal of Optics, 48(1), 104–112. https://doi.org/10.1007/s12596-018-0507-5

    Article  Google Scholar 

  • Saad, H. A., Youssef, M. M., & Mosselhi, M. A. J. M. (2011). Microwave assisted synthesis of some new fused 1,2,4-triazines bearing thiophene moieties with expected pharmacological activity. Molecules, 16(4937), 57. https://doi.org/10.3390/molecules16064937

    Article  CAS  Google Scholar 

  • Sadeghi-Kiakhani, M., Tehrani-Bagha, A. R., Safapour, S., et al. (2020). Ultrasound-assisted extraction of natural dyes from Hawthorn fruits for dyeing polyamide fabric and study its fastness, antimicrobial, and antioxidant properties. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-020-01017-0

    Article  Google Scholar 

  • Semonin, O. E., Luther, J. M., Choi, S., Chen, H. Y., Gao, J., Nozik, A. J., & Beard, M. C. (2011). Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science, 334, 1530–1533. https://doi.org/10.1126/science.1209845

    Article  CAS  Google Scholar 

  • Sert, Y., Sreenivasa, S., Doğan, H., Manojkumar, K., Suchetan, P., & Ucun, F. (2014). FT-IR, Laser-Raman spectra and quantum chemical calculations of methyl 4-(trifluoromethyl)-1H-pyrrole-3-carboxylate-A DFT approach. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 127, 122–130. https://doi.org/10.1016/j.saa.2014.02.125

    Article  CAS  Google Scholar 

  • Shahzadi, T., Sanaullah, S., Riaz, T., et al. (2021). Kinetics and thermodynamic studies of organic dyes removal on adsorbent developed from Viola tricolor extract and evaluation of their antioxidant activity. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-021-01421-0

    Article  Google Scholar 

  • Suvitha, A., Periandy, S., Boomadevi, S., & Govindarajan, M. (2014). Vibrational frequency analysis, FT-IR, FT-Raman, ab initio, HF and DFT studies, NBO, HOMO–LUMO and electronic structure calculations on pycolinaldehyde oxime. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 117, 216–224. https://doi.org/10.1016/j.saa.2013.07.080

    Article  CAS  Google Scholar 

  • Suvitha, A., Periandy, S., & Gayathri, P. (2015). NBO, HOMO–LUMO, UV, NLO, NMR and vibrational analysis of veratrole using FT-IR, FT-Raman, FT-NMR spectra and HF–DFT computational methods. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 138, 357–369. https://doi.org/10.1016/j.saa.2014.11.011

    Article  CAS  Google Scholar 

  • Suvitha, A., Periandy, S., Govindarajan, M., & Gayathri, P. (2015). Vibrational analysis using FT-IR, FT-Raman spectra and HF–DFT methods and NBO, NLO, NMR, HOMO–LUMO, UV and electronic transitions studies on 2, 2, 4-trimethyl pentane. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 138, 900–912. https://doi.org/10.1016/j.saa.2014.10.031

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Taif University Researchers Supporting Project number (TURSP-2020/165), Taif University, Taif, Saudi Arabia. (M. M. Makhlouf)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ananth Steephen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bradha, M., Balakrishnan, N., Suvitha, A. et al. Experimental, computational analysis of Butein and Lanceoletin for natural dye-sensitized solar cells and stabilizing efficiency by IoT. Environ Dev Sustain 24, 8807–8822 (2022). https://doi.org/10.1007/s10668-021-01810-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-021-01810-5

Keywords

Navigation