Skip to main content
Log in

GETEMME—a mission to explore the Martian satellites and the fundamentals of solar system physics

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

GETEMME (Gravity, Einstein’s Theory, and Exploration of the Martian Moons’ Environment), a mission which is being proposed in ESA’s Cosmic Vision program, shall be launched for Mars on a Soyuz Fregat in 2020. The spacecraft will initially rendezvous with Phobos and Deimos in order to carry out a comprehensive mapping and characterization of the two satellites and to deploy passive Laser retro-reflectors on their surfaces. In the second stage of the mission, the spacecraft will be transferred into a lower 1500-km Mars orbit, to carry out routine Laser range measurements to the reflectors on Phobos and Deimos. Also, asynchronous two-way Laser ranging measurements between the spacecraft and stations of the ILRS (International Laser Ranging Service) on Earth are foreseen. An onboard accelerometer will ensure a high accuracy for the spacecraft orbit determination. The inversion of all range and accelerometer data will allow us to determine or improve dramatically on a host of dynamic parameters of the Martian satellite system. From the complex motion and rotation of Phobos and Deimos we will obtain clues on internal structures and the origins of the satellites. Also, crucial data on the time-varying gravity field of Mars related to climate variation and internal structure will be obtained. Ranging measurements will also be essential to improve on several parameters in fundamental physics, such as the Post-Newtonian parameter β as well as time-rate changes of the gravitational constant and the Lense-Thirring effect. Measurements by GETEMME will firmly embed Mars and its satellites into the Solar System reference frame.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Andert, T.P., et al.: Precise mass determination and the nature of Phobos. Geophys. Res. Lett. 37, L09202 (2010). doi:10.1029/2009GL041829

    Article  Google Scholar 

  2. Andert, T.P., Rosenblatt, P., Pätzold, M., Häusler, B. Tyler, G.L.: The internal structure of Phobos and hints to its origin derived from Mars Express Radio Science observations, EPSDPS Joint Meeting p. 210 (2011)

  3. Avanesov, G.: Results of TV imaging Phobos—experiment VSK-Fregat. Planet. Space Sci. 39, 281–295 (1991)

    Article  ADS  Google Scholar 

  4. Barucci, M.A., et al.: NEO sample return mission. In: European Planetary Science Congress 2006, Berlin, Germany, 18–22 September 2006, p. 220

  5. Bell, J.F., et al.: Solar eclipses of Phobos and Deimos observed from the surface of Mars. Nature 436, 55–57 (2005). s.l.: doi:10.1038/nature03437

    Article  ADS  Google Scholar 

  6. Bibring J.-P., et al.: The Rosetta Lander (Philae) investigations. Space Sci. Rev. 128, 205–220 (2007)

    Article  ADS  Google Scholar 

  7. Ciufolini, I., Pavlis, E.C.: A confirmation of the general relativistic prediction of the Lense–Thirring effect. Nature 431, 958–960 (2004). doi:10.1038/nature03007

    Article  ADS  Google Scholar 

  8. Ciufolini, I., et al.: The LARES Space Experiment: LARES Orbit, Error Analysis and Satellite Structure. General Relativity and John Archibald Wheeler (2010)

  9. Clark, B.E., et al.: Asteroid Space Weathering and Regolith Evolution. Asteroids III. s.l.: The University of Arizona Press (2002)

  10. Craddock, R.A.: Are Phobos and Deimos the result of a giant impact? Icarus 211, 1150–1161 (2011)

    Article  ADS  Google Scholar 

  11. Dickey, J.O., et al.: Lunar laser ranging: a continuing legacy of the Apollo Program. Science 265, 482–490 (1994)

    Article  ADS  Google Scholar 

  12. Duev D.A., et al.: Spacecraft VLBI and Doppler tracking: algorithms and implementation. AA 541, A43 (2012)

    Google Scholar 

  13. Efroimsky, M., Lainey, V.: Physics of bodily tides in terrestrial planets and the appropriate scales of dynamical evolution. J. Geophys. Res. 112(s.l.: Issue E12) (2007)

  14. Fienga, A., et al.: Planetary and lunar ephemerides INPOP10a. In: Journées Systèmes de Référence 2010, 20–22th September 2010, Paris

  15. Galeev, A.A., et al.: The INTERBALL Project to study solar-terrestrial physics. Cosmic Res. 34(4), 313 (1996)

    ADS  Google Scholar 

  16. Giuranna,M., Roush, T.L., Duxbury, T., Hogan, R.C., Carli, C., Geminale, A., Formisano, V.: Compositional interpretation of PFS/MEx and TES/MGS thermal infrared spectra of Phobos. Planet. Space Sci. 59, 1308–1325 (2011)

    Google Scholar 

  17. Gondet, B., et al.: Phobos observations by OMEGA/Mars Express hyperspectral imager. EPSC Abstracts, vol. 5. s.l.: EPSC2010–548, European Planetary Science Congress (2010)

  18. Hamilton, D.P.: The asymmetric time-variable rings of Mars. Icarus 119, 153–172 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  19. Huygens VLBI tracking experiment 2008. JIVE Res. Note 0011

  20. Jacobson, R.A.: The orbits and masses of the Martian satellites and the libration of Phobos. Astron. J. 139, 668–679 (2010). doi:10.1088/0004-6256/139/2/668

    Article  ADS  Google Scholar 

  21. Jaekel, M.-T., Reynaud, S: Radar ranging and Doppler tracking in post-Einsteinian metric theories of gravity. Classical and Quantum Gravity 23(24), 7561–7579 (2006). doi:10.1088/0264-9381/23/24/025

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Kawaguchi, J., et al.: Hayabusa-2. Its technology and science accomplishment summary. Acta Astron. 62, 639–647 (2008)

    Article  Google Scholar 

  23. King, J.H.: A survey of long-term interplanetary magnetic field variations. JGR 81, 653 (1976)

    Article  ADS  Google Scholar 

  24. Konopliv, A.S., et al.: A global solution for the Mars static and seasonal gravity, Mars orientation, Phobos and Deimos masses, and Mars ephemeris. Icarus 182(1) (2006)

  25. Lainey, V., et al.: First numerical ephemerides of the Martian moons. Astron. Astrophys. 465, 1075 (2007)

    Article  ADS  Google Scholar 

  26. Lynch, D.K., et al.: Infrared spectra of Deimos (1–13 \(\upmu \)m) and Phobos (3–13 \(\upmu \)m). Astron. J. 134, 1459 (2007)

    Article  ADS  Google Scholar 

  27. Määttänen, A., et al.: Mapping the mesospheric CO2 clouds on Mars: MEx/OMEGA and MEx/HRSC observations and challenges for atmospheric models. Icarus 209, 452–469 (2010). doi:10.1016/j.icarus.2010.05.017

    Article  Google Scholar 

  28. Marov, M.Ya., et al.: Phobos-Grunt: Russian sample return mission. Adv. Space Res. 33(12), 2276–2280 (2004)

    Article  ADS  Google Scholar 

  29. Mignard, F.: Evolution of the Martian satellites. Mon. Not. R. Astrom. Soc. 194, 365–379 (1981)

    ADS  MATH  Google Scholar 

  30. Murchie, S., et al.: Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO). J. Geophys. Res. 112, E05S03 (2007). doi:10.1029/2006JE002682

    Article  ADS  Google Scholar 

  31. Murchie, S., et al.: Evidence for the origin of layered deposits in Candor Chasma, Mars, from mineral composition and hydrologic modeling. J. Geophys. Res. 114, E00D05 (2009). doi:10.1029/2009JE003343

    Article  ADS  Google Scholar 

  32. Müller, J., Williams, J.G., Turyshev, S.G.: Lunar laser ranging contributions to relativity and geodesy. In: Dittus, H., Lämmerzahl, C., Turyshev, S.G. (eds.) Lasers, Clocks and Drag-Free Control. Springer (2008)

  33. Neubert, R., et al.: The retro-reflector for the CHAMP satellite: final design and realization. In: Proc. of the 11th International Workshop on Laser Ranging, Deggendorf, Germany, 21–25 September, p. 260 (1998)

  34. Noble, S.K.: The optical properties of the finest fraction of lunar soil: implications for space weathering. Meteor. Planet. Sci. 36(1), 31–42 (2001)

    Article  ADS  Google Scholar 

  35. Oberst, J., et al.: The Smart Panoramic Optical Sensor Head (SPOSH)—a camera for observations of transient luminous events on planetary night sides. Planet. Space Sci. 59, 1–9 (2011)

    Article  ADS  Google Scholar 

  36. Peale, S.J., et al.: The origin of the natural satellites. Treat. Geophys. 10, 465–508 (2007)

    Article  Google Scholar 

  37. Pieters, C., et al.: Aladdin: exploration and sample return of PHOBOS and Deimos. In: 30th Annual Lunar and Planetary Science Conference, 15–29 March 1999, Houston, TX, abstract no. 1155 (1999)

  38. Pieters, C.M., et al.: Space weathering on airless bodies: resolving a mystery with lunar samples. Meteor. Planet. Sci. 35(5), 1101–1107 (2000)

    Article  ADS  Google Scholar 

  39. Preston, R.A.: Determination of Venus winds by ground-based radio tracking of the VEGA balloons. Science 231, 1414 (1986)

    Article  ADS  Google Scholar 

  40. Rambaux, N., Williams, J.G.: The Moon’s physical librations and determination of their free modes. Celest. Mech. Dyn. Astron. 109(1), 85–100 (2011)

    Google Scholar 

  41. Rosenblatt, P., et al.: Revisiting Phobos’ origin issue from Mars express radio-science observations. EPSC (abstract) (2010)

  42. Sagdeev, R.Z., Zakharov, A.V.: Brief history of the phobos mission. Nature 341, 581–585 (1989)

    Article  ADS  Google Scholar 

  43. Sagdeev, R.Z.: Differential VLBI measurements of the venus atmosphere dynamics by balloons—VEGA Project. A&A 254, 387 (1992)

    ADS  Google Scholar 

  44. Singer, S.F.: Origin of the Martian satellites Phobos and Deimos. Workhop on the exploration of Phobos and Deimos, p. 7020 (2007) (abstract)

  45. Slade: ALSEP-quasar differential VLBI. Moon 17, 133 (1977)

    Article  ADS  Google Scholar 

  46. Smith, D.E., et al.: Two-way laser link over interplanetary distance (2006)

  47. Thomas, N., et al.: Observations of Phobos, Deimos, and bright stars with the imager for Mars pathfinder. J. Geophys. Res. 104(E4), 9055–9068 (1999)

    Article  ADS  Google Scholar 

  48. Thomas, N., Stelter, R., Ivanov, A., Bridges, N.T., Herkenhoff K.E., and McEwen, A.S.: Spectral heterogeneity on Phobos and Deimos: HiRISE observations and comparisons to Mars Pathfinder results. Planet. Space Sci. (2010). doi:10.1016/j.pss.2010.04.018

  49. Thomas, P.: Surface features of PHOBOS and Deimos. Icarus 40, 223–243 (1979)

    Article  ADS  Google Scholar 

  50. Thomas, P.: In: Mars, Kieffer, H., et al. (eds.) Satellites of Mars: Geologic History, pp. 1257–1282. University of Arizona Press, Tucson (1992)

  51. Thomas, P.C., et al.: The Surface of Deimos: contribution of materials and processes to its unique appearance. Icarus 123, 536–556 (1996)

    Article  ADS  Google Scholar 

  52. Thornton, C.L., Border, J.S.: Radiometric Tracking Techniques for Deep Space Navigation. Wiley, Hoboken (2003)

    Book  Google Scholar 

  53. Ulamec, S., Biele J.: Surface elements and landing strategies for small bodies missions—Philae and beyond. Adv. Space Res. 44, 847–858 (2009)

    Article  ADS  Google Scholar 

  54. Ulamec, S., et al.: Hopper concepts for small bodies landers. Adv. Space Res. 47, 428–439 (2011)

    Article  ADS  Google Scholar 

  55. Veverka, J., Burns, J.A.: The moons of Mars. Ann. Rev. Earth Planet. Sci. 8, 527–558 (1980)

    Article  ADS  Google Scholar 

  56. Williams, J.G., et al.: Lunar rotational dissipation in solid body and molten core. J. Geophys. Res. 106, 27933–27968 (2001)

    Article  ADS  Google Scholar 

  57. Willner, K.: The Martian Moon Phobos—a geodetic analysis of its motion, orientation, shape and physical parameters. Dissertation, Technische Universität Berlin (2010)

  58. Willner, K., et al.: Phobos control point network, rotation, and shape. Earth Planet. Sci. Lett. 294, 541–546 (2010)

    Article  ADS  Google Scholar 

  59. Zakharov, A.V., et al.: Project “Phobos-Soil”: a complex sounding of the Phobos Moon. In: 37th Annual Lunar and Planetary Science Conference, 13–17 March 2006, League City, Texas, abstract no.1276 (2006)

  60. Zakharov, A.V., et al.: Phobos sample return mission. In: First International Conference on the Exploration of Phobos and Deimos, Proceedings of the conference held 5–8 November 2007 in Moffett Field, California. LPI Contribution No. 1377, p. 43 (2007)

  61. Zelenyi, L.M., et al.: Project of the Mission to Phobos. Solar Syst. Res. 44(1), 1 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Oberst.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oberst, J., Lainey, V., Poncin-Lafitte, C.L. et al. GETEMME—a mission to explore the Martian satellites and the fundamentals of solar system physics. Exp Astron 34, 243–271 (2012). https://doi.org/10.1007/s10686-012-9307-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-012-9307-0

Keywords

Navigation