Skip to main content
Log in

The PLATO 2.0 mission

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

PLATO 2.0 has recently been selected for ESA’s M3 launch opportunity (2022/24). Providing accurate key planet parameters (radius, mass, density and age) in statistical numbers, it addresses fundamental questions such as: How do planetary systems form and evolve? Are there other systems with planets like ours, including potentially habitable planets? The PLATO 2.0 instrument consists of 34 small aperture telescopes (32 with 25 s readout cadence and 2 with 2.5 s candence) providing a wide field-of-view (2232 deg 2) and a large photometric magnitude range (4–16 mag). It focusses on bright (4–11 mag) stars in wide fields to detect and characterize planets down to Earth-size by photometric transits, whose masses can then be determined by ground-based radial-velocity follow-up measurements. Asteroseismology will be performed for these bright stars to obtain highly accurate stellar parameters, including masses and ages. The combination of bright targets and asteroseismology results in high accuracy for the bulk planet parameters: 2 %, 4–10 % and 10 % for planet radii, masses and ages, respectively. The planned baseline observing strategy includes two long pointings (2–3 years) to detect and bulk characterize planets reaching into the habitable zone (HZ) of solar-like stars and an additional step-and-stare phase to cover in total about 50 % of the sky. PLATO 2.0 will observe up to 1,000,000 stars and detect and characterize hundreds of small planets, and thousands of planets in the Neptune to gas giant regime out to the HZ. It will therefore provide the first large-scale catalogue of bulk characterized planets with accurate radii, masses, mean densities and ages. This catalogue will include terrestrial planets at intermediate orbital distances, where surface temperatures are moderate. Coverage of this parameter range with statistical numbers of bulk characterized planets is unique to PLATO 2.0. The PLATO 2.0 catalogue allows us to e.g.: - complete our knowledge of planet diversity for low-mass objects, - correlate the planet mean density-orbital distance distribution with predictions from planet formation theories,- constrain the influence of planet migration and scattering on the architecture of multiple systems, and - specify how planet and system parameters change with host star characteristics, such as type, metallicity and age. The catalogue will allow us to study planets and planetary systems at different evolutionary phases. It will further provide a census for small, low-mass planets. This will serve to identify objects which retained their primordial hydrogen atmosphere and in general the typical characteristics of planets in such low-mass, low-density range. Planets detected by PLATO 2.0 will orbit bright stars and many of them will be targets for future atmosphere spectroscopy exploring their atmosphere. Furthermore, the mission has the potential to detect exomoons, planetary rings, binary and Trojan planets. The planetary science possible with PLATO 2.0 is complemented by its impact on stellar and galactic science via asteroseismology as well as light curves of all kinds of variable stars, together with observations of stellar clusters of different ages. This will allow us to improve stellar models and study stellar activity. A large number of well-known ages from red giant stars will probe the structure and evolution of our Galaxy. Asteroseismic ages of bright stars for different phases of stellar evolution allow calibrating stellar age-rotation relationships. Together with the results of ESA’s Gaia mission, the results of PLATO 2.0 will provide a huge legacy to planetary, stellar and galactic science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Aerts, C., et al.: Science 300 (5627), 1926–1928 (2003)

    ADS  Google Scholar 

  2. Aerts, C., et al.: Asteroseismology, Astronomy and Astrophysics Library. Springer Science + Business Media B.V (2010)

  3. Agol, E.: ApJ 731, 31 (2011)

    ADS  Google Scholar 

  4. Alibert, Y., et al.: A&A 417, 25 (2004)

    ADS  Google Scholar 

  5. Alibert, Y., et al.: A&A 434, 343 (2005)

    ADS  Google Scholar 

  6. Almenara, J.M., et al.: A&A 506, 337 (2009)

    ADS  Google Scholar 

  7. Alonso, R., et al.: A&A 506, 353–358 (2009a)

    ADS  Google Scholar 

  8. Alonso, R., et al.: A&A 501, L23–L26 (2009b)

    ADS  Google Scholar 

  9. Ammons, S.M., et al.: ApJ 638, 1004–1017 (2006)

    ADS  Google Scholar 

  10. Appourchaux, T., et al.: A&A 543, A54 (2012)

    ADS  Google Scholar 

  11. Auvergne, M., et al.: A&A 506, 411 (2009)

    ADS  Google Scholar 

  12. Baglin, A., et al.: In: 36th COSPAR Scientific Assembly, vol. 36, p. 3749 (2006)

  13. Ballard, S., et al.: ApJ 743, 200 (2011)

    ADS  Google Scholar 

  14. Ballot, J., et al.: A&A 423, 1051–1061 (2004)

    ADS  Google Scholar 

  15. Ballot, J., et al.: A&A 530, A97 (2011)

    ADS  Google Scholar 

  16. Barclay, T., et al.: Nature 494, 452–454 (2013)

    ADS  Google Scholar 

  17. Barge, P., et al.: A&A 482, L17–L20 (2008)

    ADS  Google Scholar 

  18. Barnes, J.W., Fortney, J.J.: ApJ 616, 1193 (2004)

    ADS  Google Scholar 

  19. Barnes, S.A.: ApJ 669, 1167–1189 (2007)

    ADS  Google Scholar 

  20. Barnes, J.W., et al.: ApJS 197, 10 (2011)

    ADS  Google Scholar 

  21. Basu, R., et al.: ApJ 728 (id 157), 10 (2011)

    Google Scholar 

  22. Batalha, N.M., et al.: ApJL 713, L103 (2010)

    ADS  Google Scholar 

  23. Batalha, N.M., et al.: ApJ 729, 27 (2011)

    ADS  Google Scholar 

  24. Batalha, N.M., et al.: ApJS 204, 24 (2013)

    ADS  Google Scholar 

  25. Batygin, K., et al.: ApJ 738, 1–11 (2011)

    ADS  Google Scholar 

  26. Bean, J.L., et al.: Nature 468, 669–672 (2010)

    ADS  Google Scholar 

  27. Beck, P.G., et al.: Science 332, 205 (2011)

    ADS  Google Scholar 

  28. Beck, P.G., et al.: Nature 481, 55–57 (2012)

    ADS  Google Scholar 

  29. Bedding, T.R., et al.: ApJ 713, L176–L181 (2010)

    ADS  Google Scholar 

  30. Bedding, T.R., et al.: Nature 471, 608–611 (2011)

    ADS  Google Scholar 

  31. Ben-Jaffel, L.: ApJ 671, L61–L64 (2007)

    ADS  Google Scholar 

  32. Ben-Jaffel, L., Sona Hosseini, S.: ApJ 709, 1284 (2010)

    ADS  Google Scholar 

  33. Benneke, B., Seager, S.: ApJ 753, 100 (2012)

    ADS  Google Scholar 

  34. Bergemann, M., et al.: MNRAS 427, 27–49 (2012)

    ADS  Google Scholar 

  35. Berta, Z.K., et al.: ApJ 747, 35 (2012)

    ADS  Google Scholar 

  36. Bodenheimer, P., et al.: ApJ 592, 555–563 (2003)

    ADS  Google Scholar 

  37. Boley, A.C., et al.: Icarus 207, 509–516 (2010)

    ADS  Google Scholar 

  38. Bonfils, X., et al.: A&A 549, A109 (2013)

    ADS  Google Scholar 

  39. Bonomo, A.S., Lanza, A.F.: A&A 547, A37 (2012)

    ADS  Google Scholar 

  40. Borkovits, et al.: MNRAS 428, 1656 (2013)

    ADS  Google Scholar 

  41. Borucki, W.J.: Icarus 58, 121B (1984)

    ADS  Google Scholar 

  42. Borucki, W.J., et al.: Science 325, 709 (2009)

    ADS  Google Scholar 

  43. Borucki, W.J., et al.: ApJ 745, 120 (2012)

    ADS  Google Scholar 

  44. Borucki, W.J., et al.: Science 340, 587 (2013)

    ADS  Google Scholar 

  45. Boss, A.P.: Science 276, 1836 (1997)

    ADS  Google Scholar 

  46. Brassard, P., et al.: ApJ 563, 1013 (2001)

    ADS  Google Scholar 

  47. Breger, M., et al.: MNRAS 414, 1721 (2011)

    ADS  Google Scholar 

  48. Breger, M., et al.: ApJ 759 (id. 62), 10 (2012)

    Google Scholar 

  49. Briquet, M., et al.: A&A 527 (A112), 8 (2011)

    Google Scholar 

  50. Briquet, M., et al.: A&A 557 (L16), 4 (2013)

    Google Scholar 

  51. Broeg, C., et al.: EPJWC 47, 3005 (2013)

    Google Scholar 

  52. Brown, T.M., et al.: ApJ 427, 1013 (1994)

    ADS  Google Scholar 

  53. Brown, T.M.: ApJ 593, L125 (2003)

    ADS  Google Scholar 

  54. Budaj, J., et al.: A&A 557, A72 (2013)

    ADS  Google Scholar 

  55. Burke, C.J., et al.: ApJS 210, 19 (2014)

    ADS  Google Scholar 

  56. Cabrera, J., et al.: A&A 522 (A110), 10 (2010)

    Google Scholar 

  57. Cabrera, J.: EAS Publ. Ser. 42, 109 (2010)

    Google Scholar 

  58. Cabrera, J., et al.: ApJ 781, 18 (2014)

    ADS  Google Scholar 

  59. Catanzarite, J., Shao, M.: ApJ 738, 10 (2011)

    Google Scholar 

  60. Carter, J.A., et al.: Science 337, 556 (2012)

    ADS  Google Scholar 

  61. Casertano, S., et al.: A&A 482, 699 (2008)

    ADS  Google Scholar 

  62. Casewell, S.L., et al.: ApJ 759, L34 (2012)

    ADS  Google Scholar 

  63. Cassan, A., et al.: Nature 481, 167–169 (2012)

    ADS  Google Scholar 

  64. Catala, C.: ExA 23, 329–356 (2009)

    ADS  Google Scholar 

  65. Catala, C., Appourchaux, T.: JPhCS 271a2084C (2011)

  66. Ceillier, T., et al.: A&A 555, A54 (2013)

    ADS  Google Scholar 

  67. Chambers, J.E., Cassen, P.: M&PS 37, 1523 (2002)

    ADS  Google Scholar 

  68. Chaplin, W.J., et al.: ApJL 732, L5 (2011)

    ADS  Google Scholar 

  69. Chaplin, W.J., et al.: ApJ 766, 101 (2013)

    ADS  Google Scholar 

  70. Charbonneau, D., et al.: Protostars and Planets V 701 (2007)

  71. Charbonneau, D., et al.: Nature 462 (7275), 891 (2009)

    ADS  Google Scholar 

  72. Charpinet, S., et al.: Nature 461, 501 (2009)

    ADS  Google Scholar 

  73. Charpinet, S., et al.: A&A 516, 6 (2010)

    ADS  Google Scholar 

  74. Charpinet, S., et al.: Nature 480, 496 (2011)

    ADS  Google Scholar 

  75. Chiappini, C., et al.: A&A 449, L27—L30 (2006)

    ADS  Google Scholar 

  76. Chiosi, C.: IAUS 239, 235 (2007)

    ADS  Google Scholar 

  77. Christensen-Dalsgaard, J.: IAUS, 123. In: Christensen-Dalsgaard, J., Frandsen, S. (eds.) p. 3 (1988)

  78. Collier-Cameron, A., et al. MNRAS 380, 1230 (2007)

    ADS  Google Scholar 

  79. Contadakis, M.E., et al.: In: Contadakis, M.E., et al. (ed.) The Apple of Knowledge, pp. 459–474 (2010)

  80. Contadakis, M.E., et al.: AN 333, 583 (2012)

    ADS  Google Scholar 

  81. Cooper, C.S., Showman, A.P.: ApJL 629, L45 (2005)

    ADS  Google Scholar 

  82. Corsaro, E., et al.: ApJ 757 (id. 190), 13 (2012)

    Google Scholar 

  83. Cowan, N.B., Agol, E.: ApJL 678, L129 (2008)

    ADS  Google Scholar 

  84. Cowan, N.B., Agol, E.: ApJ 726, 82 (2011)

    ADS  Google Scholar 

  85. Crossfield, I.J.M.: A&A 545, A97 (2012)

    ADS  Google Scholar 

  86. Csizmadia, Sz., et al.: A&A 417, 745–750 (2004)

    ADS  Google Scholar 

  87. Cunha, M.S., Metcalfe, T.S.: ApJ 666, 413 (2007)

    ADS  Google Scholar 

  88. Czesla, S., et al.: A&A 505, 1277–1282 (2009)

    ADS  Google Scholar 

  89. de Mooij, E. J. W., et al.: ApJ 771, 109 (2013)

    ADS  Google Scholar 

  90. Deeg, H.J., et al.: A&A 338, 479 (1998)

    ADS  Google Scholar 

  91. Deeg, H.J., Doyle, L.R.: EPJWC 11, id.05005 (2011)

    Google Scholar 

  92. Degroote, P., et al.: Nature 464, 259–261 (2010)

    ADS  Google Scholar 

  93. Degroote, P., et al.: A&A 536 (id.A82), 15 (2011)

    Google Scholar 

  94. Degroote, P., et al.: A&A 542 (id.A88), 25 (2012)

    Google Scholar 

  95. Deheuvels, S., Michel, E.: A&A 535, A91 (2011)

    ADS  Google Scholar 

  96. Deheuvels, S., et al.: ApJ 756, 19 (2012)

    ADS  Google Scholar 

  97. De Mooij, E.J.W., et al.: A&A 538, A46 (2012)

    ADS  Google Scholar 

  98. Derekas, A., et al.: MNRAS 425, 1312–1319 (2012)

    ADS  Google Scholar 

  99. Demory, B.-O., et al.: ApJL 735, L12 (2011a)

    ADS  Google Scholar 

  100. Demory, B.-O., et al.: ApJS 197, 12 (2011b)

    ADS  Google Scholar 

  101. Demory, B.-O., et al.: ApJL 751, L28 (2012)

    ADS  Google Scholar 

  102. De Ridder, J., et al.: Nature 459, 398 (2009)

    ADS  Google Scholar 

  103. Diaz, R.F., et al.: MNRAC 441, 983 (2014)

    ADS  Google Scholar 

  104. Dodson-Robinson, S.E., Bodenheimer, P.: Icarus 207, 491–498 (2010)

    ADS  Google Scholar 

  105. Dong, S., Zhu, Z.: ApJ 778, 53 (2013)

    ADS  Google Scholar 

  106. Doyle, L.R., et al.: Science 333, 1602 (2011)

    ADS  MathSciNet  Google Scholar 

  107. Dvorak, R., et al.: A&A 226, 335 (1989)

    ADS  Google Scholar 

  108. Dziembowski, W.A., Pamyatnykh, A.A.: MRNAS 385, 2061–2068 (2008)

    Google Scholar 

  109. Dzigan, Y., Zucker, S.: ApJL 753, L1 (2012)

    ADS  Google Scholar 

  110. Eggenberger, P., et al.: A&A 519, A116 (2010)

    ADS  Google Scholar 

  111. Eggenberger, P., et al.: A&A 544, L4 (2012)

    ADS  Google Scholar 

  112. Eggleton, P.P.: JASS 29, 145–149 (2012)

    ADS  Google Scholar 

  113. Ehrenreich, D., et al.: A&A 547, A18 (2012)

    ADS  Google Scholar 

  114. Ekenbäck, A., et al.: ApJ 709, 670–67 (2010)

    ADS  Google Scholar 

  115. Elkins-Tanton, L., Seager, S.: ApJ 685, 1237 (2008)

    ADS  Google Scholar 

  116. Erkaev, N.V., et al.: Astrobiology 13 (11), 1011–1029 (2013)

    ADS  Google Scholar 

  117. ESA/SRE(2011)13: PLATO Definition Study Report during M1/M2 candidate application (2011)

  118. ESA/SRE(2009)4: PLATO Assessment Study Report (Yellow Book) (2009)

  119. Escobar, et al.: A&A 543, A96 (2012)

    ADS  Google Scholar 

  120. Fabrycky, D.C., et al.: ApJ 750, A114 (2012)

    ADS  Google Scholar 

  121. Faedi, F., et al.: MNRAS 410, 899 (2011)

    ADS  Google Scholar 

  122. Faigler, S., et al.: ApJ 746, 185 (2012)

    ADS  Google Scholar 

  123. Faigler, S., et al.: ApJ 771, 26 (2013)

    ADS  Google Scholar 

  124. Figueira, P., et al.: A&A 493, 671 (2009)

    ADS  Google Scholar 

  125. Fontaine, G., et al.: PASP 113, 409 (2001)

    ADS  Google Scholar 

  126. Fontaine, G., Brassard, P.: PASP 120, 1043 (2008)

    ADS  Google Scholar 

  127. Fontaine, G., et al.: A&A 539, 12 (2012)

    ADS  Google Scholar 

  128. Ford, E.B., et al.: ApJ 750, 113–131 (2012)

    ADS  Google Scholar 

  129. Ford, E.B., Holman, M.J.: ApJL 664, 51 (2007)

    ADS  Google Scholar 

  130. Fortier, A., et al.: A&A 473, 311–322 (2007)

    ADS  Google Scholar 

  131. Fortier, A., et al.: A&A 549, 44 (2013)

    ADS  Google Scholar 

  132. Fortney, J.J., et al.: ApJ 659, 1661–1672 (2007)

    ADS  Google Scholar 

  133. Fortney, J.J., Nettelmann, N.: SSRv 152, 423 (2010)

    ADS  Google Scholar 

  134. Fossati, L., et al.: ApJ 714, L222–L227 (2010)

    ADS  Google Scholar 

  135. Fressin, F., et al.: ApJ 745, 81 (2012a)

    ADS  Google Scholar 

  136. Fressin, F., et al.: Nature 482, 195–198 (2012b)

    ADS  Google Scholar 

  137. Fressin, F., et al.: ApJ 766, 81 (2013)

    ADS  Google Scholar 

  138. Gaidos, E.: 770, 12 (2013)

  139. García Hernández, A., et al.: A&A 506, 79–83 (2009)

    ADS  Google Scholar 

  140. Garcia Hernández, A., et al.: Science 329, 1032 (2010)

    ADS  Google Scholar 

  141. García Hernández, A., et al.: A&A 559, A63 (2013)

    ADS  Google Scholar 

  142. Giammichele, N., et al.: ASPC 469, 49 (2013)

    ADS  Google Scholar 

  143. Gillet, D.: A&A 544, A46 (2013)

    ADS  Google Scholar 

  144. Gilliland, R.L., et al.: ApJ 766, 40 (2013)

    ADS  Google Scholar 

  145. Gillon, M., et al.: A&A 506, 359–367 (2009)

    ADS  Google Scholar 

  146. Gillon, M., et al.: A&A 520, A97–A105 (2010)

    ADS  Google Scholar 

  147. Girardi, L., et al.: A&A 436, 895–915 (2005)

    ADS  Google Scholar 

  148. Gizon, L., Solanki, S.: ApJ 589, 1009–1019 (2003)

    ADS  Google Scholar 

  149. Gizon, L., et al.: PNAS 213 (110), 13267 (2013)

    ADS  Google Scholar 

  150. Goldreich, P., Soter, S.: Icarus 5, 375 (1966)

    ADS  Google Scholar 

  151. Gómez de Castro, A.I., et al.: Ap&SS 335, 283 (2011)

    ADS  Google Scholar 

  152. Goossens, M., et al.: ApJ 760, 98 (2012)

    ADS  Google Scholar 

  153. Grasset, O., et al.: ApJ 693, 722–733 (2009)

    ADS  Google Scholar 

  154. Griest, K., et al.: ApJ 786, 158 (2014)

    ADS  Google Scholar 

  155. Guilera, O.M., et al.: A&A 532, 142 (2011)

    ADS  Google Scholar 

  156. Guillot, T., et al.: ApJL 459, L35–L38 (1996)

    ADS  Google Scholar 

  157. Guillot, T., et al.: A&A 453, L21–L24 (2006)

    ADS  Google Scholar 

  158. Guillot, T., Havel, M.: A&A 527, A20–A35 (2011)

    ADS  Google Scholar 

  159. Hadden, S., Lithwick, Y.: ApJ 787, 80 (2014)

    ADS  Google Scholar 

  160. Haswell, C., et al.: ApJ 760, 79 (2012)

    ADS  Google Scholar 

  161. Hatzes, A., et al.: ApJ 743, 75 (2011)

    ADS  Google Scholar 

  162. Heber, U.: ARA&A 47, 211 (2009)

    ADS  Google Scholar 

  163. Hekker, S., et al.: MNRAS 414, 2594–2601 (2011)

    ADS  Google Scholar 

  164. Hekker, S., et al.: Astron. Nachr. 333, 1022 (2012)

    ADS  Google Scholar 

  165. Helled, R., Schubert, G.: Icarus 198, 156–162 (2008)

    ADS  Google Scholar 

  166. Helled, R., et al.: ApJ 726, 15–22 (2011)

    ADS  Google Scholar 

  167. Helled, R., Bodenheimer, P.: Icarus 211, 939 (2011)

    ADS  Google Scholar 

  168. Helled, R., Guillot, T.: ApJ 767, 113 (2013)

    ADS  Google Scholar 

  169. Heller, R., Barnes, R: IAU Symposium 293, 159 (2014)

  170. Heng, K., et al.: MNRAS 413, 2380–2402 (2011)

    ADS  Google Scholar 

  171. Hogan, E., et al.: MNRAS 396, 2074 (2009)

    ADS  Google Scholar 

  172. Holmström, M., et al.: Nature 451, 970–972 (2008)

    ADS  Google Scholar 

  173. Hori, Y., Ikoma, M.: MNRAS 416, 1419–1429 (2011)

    ADS  Google Scholar 

  174. Houdek, G., Gough, D.O.: MNRS 375, 861–880 (2007)

    ADS  Google Scholar 

  175. Howard, A.W., et al.: ApJS 201, 15 (2012)

    ADS  Google Scholar 

  176. Huber, D., et al.: ApJ 760, 32 (2012)

    ADS  Google Scholar 

  177. Huber, D., et al.: ApJ 767, 127 (2013a)

    ADS  Google Scholar 

  178. Huber, D., et al.: Science 342, 331–334 (2013b)

    ADS  Google Scholar 

  179. Hubickyj, O., et al.: Icarus 179, 415–431 (2005)

    ADS  Google Scholar 

  180. Ida, S., Lin, D.N.C.: ApJ 604, 388–413 (2004)

    ADS  Google Scholar 

  181. Ikoma, M., et al.: ApJ 537, 1013–1025 (2000)

    ADS  Google Scholar 

  182. Johnson, J.A., et al.: PASP 122, 701 (2010a)

    ADS  Google Scholar 

  183. Johnson, J.A., et al.: ApJl 721, L153 (2010b)

    ADS  Google Scholar 

  184. Jura, M.: AJ 130, 1261 (2005)

    ADS  Google Scholar 

  185. Kasting, J.F., et al.: Icarus 101, 108–128 (1993)

    ADS  Google Scholar 

  186. Kennedy, G.M., Kenyon, S.J.: ApJ 673, 502 (2008)

    ADS  Google Scholar 

  187. Kipping, D.M.: MNRAS 392, 181–189 (2009a)

    ADS  Google Scholar 

  188. Kipping, D.M.: MNRAS 396, 1797–1804 (2009b)

    ADS  Google Scholar 

  189. Kipping, D.M., et al.: MNRAS 400, 398–405 (2009c)

    ADS  Google Scholar 

  190. Kipping, D.M., et al.: ApJ 750, 115 (2012)

    ADS  Google Scholar 

  191. Kipping, D.M., et al.: MNRAS 434, 1883 (2013)

    ADS  Google Scholar 

  192. Kislyakova, K.G., et al.: Astrobiology 13 (11), 1030–1048 (2013)

    ADS  Google Scholar 

  193. Kjeldsen, H., Bedding, T.R.: A&A 293, 87 (1995)

    ADS  Google Scholar 

  194. Kjeldsen, H., et al.: ApJ 683, L175–L178 (2008)

    ADS  Google Scholar 

  195. Knutson, H.A., et al.: Nature 447, 183–186 (2007)

    ADS  Google Scholar 

  196. Knutson, H.A., et al.: ApJ 690, 822–836 (2009)

    ADS  Google Scholar 

  197. Knutson, H.A., et al.: ApJ 735, 27 (2011)

    ADS  Google Scholar 

  198. Kreidberg, L., et al.: Nature 505, 69 (2014)

    ADS  Google Scholar 

  199. Koch, D.G., et al.: ApJL 713, L79–L86 (2010)

    ADS  Google Scholar 

  200. Kolenberg, K., et al.: MNRAS 411, 878–890 (2011)

    ADS  Google Scholar 

  201. Kollath, Z., et al.: MNRAS 414, 1111–1118 (2011)

    ADS  Google Scholar 

  202. Koskinen, T.T., et al.: Nature 450, 845 (2007)

    ADS  Google Scholar 

  203. Koskinen, T.T., et al.: Icarus 226, 1678 (2013)

    ADS  Google Scholar 

  204. Kosovichev, A.G.: AN 323, 186–191 (2002)

    ADS  Google Scholar 

  205. Kovacs, G., et al.: ApJ 724, 866–877 (2010)

    ADS  Google Scholar 

  206. Kunder, A., et al.: AJ 141, 15 (2011)

    ADS  Google Scholar 

  207. Lammer, H., et al.: Ap&SS 335, 9–23 (2011a)

    ADS  Google Scholar 

  208. Lammer, H., et al.: Ap&SS 335, 39–50 (2011b)

    ADS  Google Scholar 

  209. Lammer, H., et al.: EP&S 64, 179–199 (2012)

    ADS  Google Scholar 

  210. Laughlin, G., et al.: ApJ 729, 7 (2011)

    ADS  Google Scholar 

  211. Le Borgne, J.F., et al.: AJ 144, 39–53 (2012)

    ADS  Google Scholar 

  212. Lebreton, Y., Goupil, M.: A&A 544, 13 (2012)

    ADS  Google Scholar 

  213. Lecavelier des Etangs, A., et al.: A&ASS 140, 15 (1999)

    ADS  Google Scholar 

  214. Lecavelier des Etangs, A., et al.: A&A 543, 4 (2012)

    ADS  Google Scholar 

  215. Leconte, J., Charbier, T.: A&A 540, A20 (2012)

    ADS  Google Scholar 

  216. Leconte, J., Charbier, T.: Nat. Geosci. 6, 347 (2013)

    ADS  Google Scholar 

  217. Lefever, K., et al.: A&A 463, 1093–1109 (2007)

    ADS  Google Scholar 

  218. Leger, A., et al.: A&A 506, 287–302 (2009)

    ADS  Google Scholar 

  219. Liebert, J., et al.: ApJ 769, 7 (2013)

    ADS  Google Scholar 

  220. Linsky, J.L., et al.: ApJ 717, 1291–1299 (2010)

    ADS  Google Scholar 

  221. Lissauer, J.J., et al.: Nature 470, 53–58 (2011)

    ADS  Google Scholar 

  222. Llama, J., et al.: MNRAS 416, L41–L44 (2011)

    ADS  Google Scholar 

  223. Loeb, A., Maoz, D.: MNRAS 432, 11 (2013)

    ADS  Google Scholar 

  224. Lopez, E.D., et al.: ApJ 761, 59 (2012)

    ADS  Google Scholar 

  225. Madhusudhan, N., Seager, S.: ApJ 707, 24–39 (2009)

    ADS  Google Scholar 

  226. Mazumdar, A., et al.: ApJ 782, 17 (2014)

    ADS  Google Scholar 

  227. Maeder, A.: Physics, Formation and Evolution of Rotating Stars. Springer Eds (2009)

  228. Maeder, A: A&A 26, 215 (1973)

    ADS  Google Scholar 

  229. Magic, Z., et al.: A&A 557, A26 (2013)

    ADS  Google Scholar 

  230. Mamajek, E.E., Hillenbrand, L.A.: ApJ 687, 1264 (2008)

    ADS  Google Scholar 

  231. Mantegazza, L., et al.: A&A 542 (id.A24), 13 (2012)

    Google Scholar 

  232. Marcos-Arenal, P. , et al.: arXiv: http://arxiv.org/abs/1004.0738 (2014)

  233. Mardling, R.A.: MNRAS 407, 1048–1069 (2010)

    ADS  Google Scholar 

  234. Marley, M.S., et al.: JGR 100, 23349–23354 (1995)

    ADS  Google Scholar 

  235. Marques, J.P., et al.: A&A 549, A74 (2013)

    ADS  Google Scholar 

  236. Mathur, S., et al.: ApJ 749, 152 (2012)

    ADS  Google Scholar 

  237. Mathur, S., et al.: A&A 550 (id.A32), 7 (2013)

    Google Scholar 

  238. Matijevič, G., et al.: AJ 143, 123 (2012)

    ADS  Google Scholar 

  239. Mayer, L., et al.: MNRAS 363, 641–648 (2005)

    ADS  Google Scholar 

  240. Mayor, M., et al.: arXiv: http://arxiv.org/abs/1109.2497M (2011)

  241. Mazeh, T., Faigler, S.: A&A 521, L59 (2010)

    ADS  Google Scholar 

  242. Mazeh, T., et al.: A&A 541, A56 (2012)

    ADS  Google Scholar 

  243. Mazeh, T., et al.: ApJS 208, 16 (2013)

    ADS  Google Scholar 

  244. McLaughlin, D.B.: ApJ 60, 22–31 (1924)

    ADS  Google Scholar 

  245. Metcalfe, T.S., et al.: ApJ 699, 373–382 (2009)

    ADS  Google Scholar 

  246. Metcalfe, T.S., et al.: ApJ 723, 1583–1598 (2010)

    ADS  Google Scholar 

  247. Metcalfe, T.S., et al.: ApJ 748, 10 (2012)

    ADS  Google Scholar 

  248. Miglio, A., Montalbán, J.: A&A 441, 615–629 (2005)

    ADS  Google Scholar 

  249. Miglio, A., et al.: A&A 520, L6 (2010)

    ADS  Google Scholar 

  250. Miglio, A.: In: Miglio, A., Montalban, J., Noels, A. (eds.) Red Giants as Probes of the Structure and Evolution of the Milky Way. Springer, Berlin (2012)

  251. Miglio, A., et al.: EPJWC 19, 5012 (2012)

    Google Scholar 

  252. Miglio, A., et al.: MNRAS 429, 423–428 (2013)

    ADS  Google Scholar 

  253. Militzer, B., et al.: ApJL 688, L45–L48 (2008)

    ADS  Google Scholar 

  254. Miller, N., Fortney, J.J.: ApJL 736, L29–L34 (2011)

    ADS  Google Scholar 

  255. Molnár, L., et al.: ApJ 757, 13 (2012)

    ADS  Google Scholar 

  256. Moravveji, E., et al.: ApJ 749, 74 (2012a)

    ADS  Google Scholar 

  257. Moravveji, E., et al.: ApJ 747 (108), 7 (2012b)

    Google Scholar 

  258. Mortier, A. , et al. : A&A 551, 5 (2013)

    Google Scholar 

  259. Montalban, J., et al.: ApJ 766, 118 (2013)

    ADS  Google Scholar 

  260. Mordasini, C., et al.: A&A 501, 1161–184 (2009)

    ADS  Google Scholar 

  261. Mordasini, C., et al.: A&A 541, A97 (2012a)

    ADS  Google Scholar 

  262. Mordasini, C., et al.: A&A 547 (id.A111), 23 (2012b)

    Google Scholar 

  263. Mosser, B., Appourchaux, T.: A&A 532, A86 (2010)

    Google Scholar 

  264. Mosser, B., et al.: A&A 532, A86 (2011)

    ADS  Google Scholar 

  265. Mosser, B., et al.: A&A 540, A143 (2012)

    ADS  Google Scholar 

  266. Moutou, C., et al.: Icarus 226, 1625 (2013)

    ADS  Google Scholar 

  267. Muirhead, P.S., et al.: ApJ 747, 144 (2012)

    ADS  Google Scholar 

  268. Muirhead, P.S., et al.: ApJ 767, 111 (2013)

    ADS  Google Scholar 

  269. Namouni, F.: ApJL 719, 145 (2010)

    ADS  Google Scholar 

  270. Narita, N., et al. : PASJ 65, 27 (2013)

    ADS  Google Scholar 

  271. Nettelmann, N., et al.: ApJ 683, 1217–1228 (2008)

    ADS  Google Scholar 

  272. Nesvorný, D., et al.: ApJ 777, 3 (2013)

    ADS  Google Scholar 

  273. Nielsen, M.B., et al.: A&A 557, L10 (2013)

    ADS  Google Scholar 

  274. Noack, L., et al.: P&SS, in press (2014)

  275. Nordhaus, J., Spiegel, D.S.: MNRAS 432, 500 (2013)

    ADS  Google Scholar 

  276. Ofir, A., Dreizler, S.: A&A 555, A58 (2013)

    ADS  Google Scholar 

  277. Ogilvie, G.I.: MNRAS 429, 613 (2013)

    ADS  Google Scholar 

  278. Ohta, Y., et al.: ApJ 690, 1–12 (2009)

    ADS  Google Scholar 

  279. Oshagh, M., et al.: A&A 556, A19 (2013)

    ADS  Google Scholar 

  280. Østensen, R.H., et al.: MNRAS 409, 1470 (2010)

    ADS  Google Scholar 

  281. Pápics, P.I., et al.: A&A 528 (id.A123), 11 (2011)

    Google Scholar 

  282. Pápics, P.I., et al.: A&A 542 (id.A55), 13 (2012)

    Google Scholar 

  283. Pápics, P.I., et al. : A&A 553, A127 (2013)

    ADS  Google Scholar 

  284. Parker, E.N.: Solar Phys. 176, 219 (1979)

    ADS  Google Scholar 

  285. Pasquini, L., et al. A&A 473, 979 (2007)

    ADS  Google Scholar 

  286. Perryman, M., et al.: A&A 369, 339 (2001)

    ADS  Google Scholar 

  287. Petigura, E., et al.: PNAS 110, 19273 (2013)

    ADS  Google Scholar 

  288. Pierens, A., Nelson, R.P.: A&A 472, 993 (2007)

    ADS  MATH  Google Scholar 

  289. Podolak, M., et al.: P&SS 43, 1517–1522 (1995)

    ADS  Google Scholar 

  290. Pont, F., et al.: MNRAS 432, 2917–2944 (2013)

    ADS  Google Scholar 

  291. Poretti, E., et al.: A&A 506, 85–93 (2009)

    ADS  Google Scholar 

  292. Poretti, E., et al.: A&A 520, A108 (2010)

    ADS  Google Scholar 

  293. Poretti, E., et al.: A&A 528, A147 (2011)

    ADS  Google Scholar 

  294. Prša, A., et al.: AJ 141, 83 (2011)

    ADS  Google Scholar 

  295. Quirion, P.-O., et al.: ApJ 725, 2176–2189 (2010)

    ADS  Google Scholar 

  296. Rafert, J.B., Twigg, L.W.: MNRAS 193, 7 (1980)

    Google Scholar 

  297. Rappaport, S., et al.:. ApJ 752, 1 (2012)

    ADS  Google Scholar 

  298. Rauer, H., Catala, C.: IAUS 276, 354–358 (2011)

    ADS  Google Scholar 

  299. Rauer, H., et al.: In: deVera (ed) Habitability of Other Planets and Satellites (2013)

  300. Reese, D.R., et al.: A&A 539, A63 (2012)

    ADS  Google Scholar 

  301. Rempel, M., et al.: Science 325, 171 (2009)

    ADS  Google Scholar 

  302. Remus, M., et al.: A&A 541, id.A165 (2012)

  303. Ricker, G., et al.: JAVSO 42, 234 (2014)

    ADS  Google Scholar 

  304. Robin, A.C., et al.: A&A 409, 523–540 (2003)

    ADS  Google Scholar 

  305. Rogers, T.M., et al.: ApJ 772, 21 (2013)

    ADS  Google Scholar 

  306. Rossiter, R.A.: ApJ 60, 15–21 (1924)

    ADS  Google Scholar 

  307. Rowe, J.F., et al. ApJ 784, 45 (2014)

    ADS  Google Scholar 

  308. Roxburgh, I.W., Vorontsov, S.V.: A&A 411, 215 (2003a)

    ADS  Google Scholar 

  309. Roxburgh, I.W., Vorontsov, S.V.: Ap&SS 284, 187 (2003b)

    ADS  Google Scholar 

  310. Roxburgh, I.W., Vorontsov, S.V.: MNRAS 369, 1491 (2006)

    ADS  Google Scholar 

  311. Roxburgh, I.W.: A&A 493, 185–191 (2009a)

    ADS  Google Scholar 

  312. Roxburgh, I.W.: A&A 506, 435–444 (2009b)

    ADS  Google Scholar 

  313. Saio, H., et al.: ApJ 650, 1111–1118 (2006)

    ADS  Google Scholar 

  314. Samus, N.N., et al.: Fifty years of Cosmic Era: real and virtual studies of the sky. In: Mickaelian, A.M., et al. (eds.) Conference of Young Scientists of CIS Countries, pp. 39–47 (2012)

  315. Sanchís-Ojeda, R., et al.: Nature 487, 449–453 (2012)

    ADS  Google Scholar 

  316. Sanchís-Ojeda, R., et al.: AN 334, 180 (2013a)

    ADS  Google Scholar 

  317. Sanchís-Ojeda, R., et al.: ApJ 774, 54 (2013b)

    ADS  Google Scholar 

  318. Santerne, A., et al.: A&A 545, A76 (2012)

    ADS  Google Scholar 

  319. Santerne, A., et al.: A&A 557, 139 (2013)

    ADS  Google Scholar 

  320. Sartoretti, P., Schneider, J.: A&AS 134, 553–560 (1999)

    ADS  Google Scholar 

  321. Saumon, D., Guillot, T.: ApJ 609, 1170–1180 (2004)

    ADS  Google Scholar 

  322. Scaringi, S., et al.: MNRAS 431, 2535–2541 (2013)

    ADS  Google Scholar 

  323. Schneider, J., et al.: In: Rebolo, R., Martin, E.L., Zapatero Osorio, M.R. (eds.) Conf. Ser. 134, p. 241 (1998)

  324. Schneider, J., et al.: A&A 532, 79 (2011)

    ADS  Google Scholar 

  325. Schneider, J., et al.: IJA. submitted (2014)

  326. Seager, S., et al.: ApJ 669, 1279–1297 (2007)

    ADS  Google Scholar 

  327. Shiode, J.H., et al.: MNRAS 430, 1736–1745 (2013)

  328. Showman, A.P., Guillot, T.: A&A 385, 166–180 (2002)

    ADS  Google Scholar 

  329. Showman, A.P., et al.: ApJ 699, 564 (2009)

    ADS  Google Scholar 

  330. Shporer, A., et al.: NewA 17, 309–315 (2012)

    ADS  Google Scholar 

  331. Shporer, A., et al.: AJ 142, 195 (2011)

    ADS  Google Scholar 

  332. Shustov, B., et al.: Ap&SS 320, 187–190 (2009)

    ADS  Google Scholar 

  333. Shustov, B., et al.: Ap&SS 335, 273–282 (2011)

    ADS  Google Scholar 

  334. Simon, A.E., et al.: MNRAS 419, 164–171 (2012)

    ADS  Google Scholar 

  335. Silva, A.V.R.: ApJL 585, 147 (2003)

    ADS  Google Scholar 

  336. Silva Aguirre, V., et al.: ApJ 757, 99 (2012)

    ADS  Google Scholar 

  337. Silva-Valio, A.: ApJ 683, 179–182 (2008)

    ADS  Google Scholar 

  338. Silva-Valio, A., Lanza, A.F.: A&A 529, A36 (2011)

    ADS  Google Scholar 

  339. Silvotti, R., et al.: Nature 449, 189 (2007)

    ADS  Google Scholar 

  340. Silvotti, R., et al.: AIP Conf. Proc. 1331, 336 (2011)

    ADS  Google Scholar 

  341. Silvotti, R., et al.: A&A, submitted (2014)

  342. Slawson, R.W., et al.: AJ 142, 160 (2011)

    ADS  Google Scholar 

  343. Sliski, D.H., Kipping, D.M.: arXiv: http://arxiv.org/abs/1401.1207 (2014)

  344. Snellen, I.A.G., et al.: Nature 459, 543–545 (2009)

    ADS  Google Scholar 

  345. Snellen, I.A.G., et al.: A&A 513, A76 (2010)

    ADS  Google Scholar 

  346. Sohl, F., Schubert, G.: In: Spohn, T. (ed.) Treatise on Geophysics (Editor-in-Chief G. Schubert), vol. 10, Planets and Moons, pp. 27–68. Elsevier (2007)

  347. Solanki, S.K., et al.: ARA&A 51, 311–351 (2013)

    ADS  Google Scholar 

  348. Sotin, C., et al.: Icarus 191, 337–351 (2007)

    ADS  Google Scholar 

  349. Steffen, J.H., et al.: MNRAS 428, 1077 (2012)

    ADS  Google Scholar 

  350. Stello, D., et al.: ApJ 700, 1589–1602 (2009)

    ADS  Google Scholar 

  351. Stello, D., et al.: ApJ 13 (id. 13) (2011)

  352. Straniero, O., et al.: ApJ 583, 878 (2003)

    ADS  Google Scholar 

  353. Strassmeier, K.G.: A&ARv 17, 251–308 (2009)

    ADS  Google Scholar 

  354. Suárez, J.C., et al.: A&A 449, 673–685 (2006)

    ADS  Google Scholar 

  355. Suárez, J.C., et al.: ApJ 690, 1401 (2009)

    ADS  Google Scholar 

  356. Suárez, J.C., et al.: A&A 563, A7 (2014)

    ADS  Google Scholar 

  357. Swift, D.C., et al.: ApJ 744, 595 (2012)

    Google Scholar 

  358. Szabó, R., et al.: MNRAS 409, 1244 (2010)

    ADS  Google Scholar 

  359. Szabo, R., et al.: MNRAS 413, 2709 (2011)

    ADS  Google Scholar 

  360. Szabo, R., et al.: A&A 553, 17 (2013)

    ADS  Google Scholar 

  361. Thoul, A., et al.: A&A 551 (id.A12), 6 (2013)

    Google Scholar 

  362. Tingley, B., et al.: ApJ 726, 112 (2011)

    ADS  Google Scholar 

  363. Tkachenko, A., et al.: A&A 556 (id A52), 12 (2013)

    MathSciNet  Google Scholar 

  364. Torres, G., et al.: ApJ 727, 24 (2011)

    ADS  Google Scholar 

  365. Torres, G., et al.: A&ARv 18, 67–126 (2010)

    ADS  Google Scholar 

  366. Tran, K., et al.: ApJ 774, 81 (2013)

    ADS  Google Scholar 

  367. Traub, W.A.: ApJ 745, 10 (2012)

    Google Scholar 

  368. Tsiganis, K., et al.: Nature 435, 459–461 (2005)

    ADS  Google Scholar 

  369. Tusnski, L.R.M., Valio, A.: ApJ 743, 97 (2011)

    ADS  Google Scholar 

  370. Udry, S., Santos, N.C.: ARA&A 45, 397–439 (2007)

    ADS  Google Scholar 

  371. Uytterhoeven, K., et al.: A&A 534 (A125), 70 (2011)

    Google Scholar 

  372. Valencia, D., et al.: Icarus 181, 545–554 (2006)

    ADS  Google Scholar 

  373. Valencia, D., et al.: ApJ 665, 1413–1420 (2007)

    ADS  Google Scholar 

  374. Van Eylen, V., et al.: ApJ 782, 1 (id.14), 13 (2014)

    ADS  Google Scholar 

  375. Van Grootel, V., et al.: A&A 553, 97 (2013)

    ADS  Google Scholar 

  376. Vazan, A., Helled, R.: ApJ 756, 90 (2012)

    ADS  Google Scholar 

  377. Vidal-Madjar, A., et al.: Nature 422, 143–146 (2003)

    ADS  Google Scholar 

  378. Vidal-Madjar, A., et al.: ApJ 604, 69–72 (2004)

    ADS  Google Scholar 

  379. Vidal-Madjar, A., et al.: A&A 527, 110 (2011)

    ADS  Google Scholar 

  380. Vigan, A., et al.: A&A 544, A9 (2012)

    ADS  Google Scholar 

  381. Wagner, F.W., et al.: Icarus 214, 366–376 (2011)

    ADS  Google Scholar 

  382. Wagner, F.W., et al.: A&A 541, A103–A116 (2012)

    ADS  Google Scholar 

  383. Wells, M., et al. AAS 221, #354.15 (2013)

    ADS  Google Scholar 

  384. Welsh, W.F., et al.: ApJL 713, L145–L149 (2010)

    ADS  Google Scholar 

  385. Welsh, W.F., et al.: Nature 481, 475–479 (2012)

    ADS  Google Scholar 

  386. West, M.J., et al.: ApJ 730, 122 (2011)

    ADS  Google Scholar 

  387. Wheatley, P., et al. EPJWC 47, id.13002 (2013)

    Google Scholar 

  388. White, T.R., et al.: ApJ 743, 161 (2011)

    ADS  Google Scholar 

  389. Winn, J.N., et al.: ApJL 741, L1 (2011)

    ADS  Google Scholar 

  390. Wu, Y., Lithwick, Y. ApJ 772, 74 (2013)

    ADS  Google Scholar 

  391. Zahn, J.-P.: A&A 265, 115 (1992)

    ADS  Google Scholar 

  392. Zeng, L., Sasselov, D.: PASP 125, 227 (2013)

    ADS  Google Scholar 

  393. Zhao, J., et al.: ApJ 557, 384–388 (2001)

    ADS  Google Scholar 

  394. Zucker, S., et al.: ApJ 670, 1326–1330 (2007)

    ADS  Google Scholar 

  395. Zwintz, K., et al.: A&A 550, A121 (2013)

    ADS  Google Scholar 

  396. Diaz, R.F., et al.: MNRAC, Vol. 441 (2014)

Download references

Acknowledgments

The authors acknowledge many fruitful discussions with the ESA study team members, in particular the project scientist and the project manager (Ana Heras and Philippe Gondoin), as well as previous ESA members of the PLATO M1/M2 proposal (Osvaldo Piersanti, Anamarija Stankov). The M3 PLATO 2.0 Mission Consortium also thanks the consortium participants, in particular CNES, France, who prepared the M1/M2 PLATO proposal, which forms the basis on which PLATO 2.0’s application as M3 candidate is built on. We also thank Kayser Threde (in particular the study manager Richard Haarmann) for their inputs and fruitful cooperation in the M3 proposal preparation phase. We also thank the referees for their thorough revision and insightful comments, which have led to a significant improvement of this manuscript.

M. Ammler-von Eiff acknowledges support by DLR (Deutsches Zentrum für Luft- und Raumfahrt) under the project 50 OW 0204. M. Bergemann acknowledges the support by the European Research Council/European Community under the FP7 programme through ERC Grant number 320360. I. Boisse acknowledges the support from the Fundacao para a Ciencia e Tecnologia (Portugal) through the grant SFRH/BPD/87857/2012. For J. Christensen-Dalsgard, funding for the Stellar Astrophysics Centre is provided by The Danish National Research Foundation (Grant DNRF106). The research is supported by the ASTERISK project (ASTERoseismic Investigations with SONG and Kepler) funded by the European Research Council (Grant agreement no.: 267864). L. Gizon acknowledges support from Deutsche Forschungsgemeinschaft SFB 963 “Astrophysical Flow Instabilities and Turbulence” (Project A18). M. Godolt and J.L. Grenfell have been partly supported by the Helmholtz Gemeinschaft (HGF) through the HGF research alliance “Planetary Evolution and Life”. S. Hekker acknowledges financial support from the Netherlands Organisation for Scientific Research (NOW) and the Stellar Ages project funded by the European Research Council (Grant agreement number 338251). K. G. Kislyakova, N. V. Erkaev, M. L. Khodachenko, H. Lammer, M. Güdel acknowledge support by the FWF NFN project S116 “Pathways to Habitability: From Disks to Active Stars, Planets and Life”, and subprojects, S116 604-N16 “Radiation & Wind Evolution from T Tauri Phase to ZAMS and Beyond”, S116 606-N16 “Magnetospheric Electrodynamics of Exoplanets”, S116607-N16 “Particle/Radiative Interactions with Upper Atmospheres of Planetary Bodies Under Extreme Stellar Conditions”. F. Kupka is grateful for support through FWF project P25229-N27. M. Mas-Hesse was supported by Spanish MINECO under grant AYA2012-39362-C02-01. L. Noack has been funded by the Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy Office through the Planet Topers alliance. D.R. Reese is supported through a postdoctoral fellowship from the “Subside fèdèral pour la recherche 2012”, University of Liège. I.W. Roxburgh gratefully acknowledges support from the Leverhulme Foundation under grant EM-2012-035/4. A. Santerne and N.C. Santos acknowledge the support by the European Research Council/European Community under the FP7 through Starting Grant agreement number 239953. S. G. Sousa acknowledges the support by the European Research Council/European Community under the FP7 through Starting Grant agreement number 239953. Gy.M. Szabó acknowledges the Hungarian OTKA Grants K104607, the HUMAN MB08C 81013 grant, by the City of Szombathely under agreement No. S-11-1027 and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences. R. Szabó was supported by the János Bolyai Research Scholarship, Hungarian OTKA grant K83790, KTIA URKUT_10-1-2011-0019 grant Lendület-2009 Young Researchers’ Program and the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreements no. 269194 (IRSES/ASK) and no. 312844 (SPACEINN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Rauer.

Appendix A

Appendix A

Methods: characterizing planets and their host stars

Since the PLATO 2.0 mission addresses science goals in very different scientific communities, we briefly describe the key aspects of the methods used.

1.1 A1 Planetary transits, a method to detect planets and determine their parameters

The transit method photometrically measures the flux of target stars over time, searching for a dimming of stellar flux by an orbiting planet passing through the line-of-sight to Earth. When the planet is in front of the star, it shades an area on the stellar surface proportional to its size. The dimming of stellar flux is therefore proportional to the square of the radius of the planet, Rplanet, relative to the radius of the star, RStar:ΔF α(Rplanet/RStar)2. Figure 17 shows as an example the transit light curve of Kepler-10b, the smallest known exoplanet with radius and mass measurement so far (Rplanet=1.416+/−0.03 REarth, Mplanet=4.6+/−1.2 MEarth, [24]). The round shape during transit is caused by the limb darkening of the host star. The transit method allows us to directly measure a planet’s size once the size of the star is known.

Fig. 17
figure 17

Transit light curve of Kepler-10b [23]. The planet has an orbital period of about 0.8 days and was observed by Kepler for a period over 8 months for this data set. The V magnitude of the host star is 10.96 mag

The mass of a detected transiting planet then has to be determined by other means, for example by spectroscopic radial-velocity follow-up. Once radius and true mass of the detected object are known, its bulk parameters are well determined and the object can be clearly separated from possible false-alarm events also causing periodic dimming of stellar intensity, such as spots or eclipsing binaries. The combination of radius and true mass provides the mean density of the planet. In combination with models of planetary interiors, the inner structures of planets can be constrained.

The periodicity of transit events allows us to derive the orbital period and therefore orbital distance according to Kepler’s 3rd law. If the secondary eclipse can be detected, i.e. the planet disappears behind its host star, the orbital eccentricity can also be derived. Furthermore, the combination of transits with spectroscopic radial-velocity follow-up allows us to determine the alignment of the planetary orbital plane with the projected stellar rotation axis and the sense of orbital revolution of the planet around its star by the Rossiter-McLaughlin effect [244, 306].

High-precision light curves, such as those provided by the PLATO 2.0 mission, will allow us to detect exomoons and possibly even rings of Saturn-like exoplanets.

What makes the transit method a ‘gold-mine’ for planetary research is the ability to not only detect planets, but also characterize them physically. The prime planet parameters radius, true mass and therefore mean planet density have already been mentioned. Furthermore, photometric measurements of the stellar light reflected on the surface of the orbiting planet allow us to determine the planetary albedo. During secondary eclipse the emitted infrared flux can be derived and the planet’s effective temperature determined. Spectroscopic observations during primary transit and during secondary eclipse permit detection of atmospheric absorption by atoms and molecules in the planetary atmosphere. The analysis of the transit ingress and egress can be used to map the planetary atmosphere, at least for close-in hot giants.

In summary, transiting planets allow us to derive the following parameters of a planet:

∙ Orbit:    – Period, semi-major axis, spin-orbit alignment

∙ Planet parameters:    –radius, mass, density, constrain inner structure and composition

    – effective temperature, albedo, atmospheric composition, surface heat distribution and reflectivity variations from phase curves for gas giants in IR and optical

    – exomoons, planetary rings, Trojan objects

The main detection and characterization goal of PLATO 2.0 is focused on small, terrestrial planets, down to Earth-sized and smaller. An Earth-sized planet around a solar-like star causes a transit depth of about 0.008 %. It is obvious that high signal-to-noise-ratio (SNR) light curves are needed to detect such small signals and disentangle them from stellar activity. As an example, one can look at CoRoT-7b and Kepler-10b [23, 218] two planets slightly larger than Earth (1.6+/−0.1 REarth, Hatzes et al. [163] and 1.416+/−0.03 REarth, Batalha et al. [23], respectively) on short-period orbits (<1 day period), orbiting stars around 11 mag. Transits of both planets were clearly detected by the satellite telescopes and allowed determination of their radii. However, several transit events were co-added to achieve this precision. It is clear that brighter target stars must be screened when targeting small planets on long orbital periods. Furthermore, the investment of observing time to determine the planetary mass from radial-velocity measurements for such low-mass planets around faint stars is large and restricted to relatively bright host stars. This will be even worse for Earth-mass planets. This is the particular strength of the PLATO 2.0 mission which is designed to detect planets around bright stars in large numbers, allowing for such follow-up investigations and thereby providing statistical information on planet properties.

We furthermore note that planetary masses and radii cannot be determined independently from the properties of their host stars. For both of these parameters, the result is expressed in terms of the corresponding stellar parameter. The accuracy of the planetary parameters derived, therefore, is ultimately limited by our knowledge of the star. PLATO 2.0 addresses this key issue by performing asteroseismology analysis of all planet hosting stars in its main magnitude range (4–11 mag), thereby providing radii and masses with unprecedented accuracy. In addition, the asteroseismology analysis allows determining the age of stars, hence planetary systems, as accurate as 10 %.

A disadvantage of the transit method is the required transit geometry. The so-called geometrical probability is the probability to see a system edge-on. Table 3 provides some examples. The geometrical probability mainly scales with the orbital distance, a, of the planet as 1/a. It is around 10 % for a close-in hot Jupiter and decreases to about 0.5 % for a planet on a 1 year orbit like Earth. The transit event itself is always short compared to the orbital period of planets. Searching for transits therefore requires continuous coverage of planetary orbits not to miss the short transit events. PLATO 2.0 addresses these challenges of the transit method by providing a very large field-of-view (FoV) and many pointings on the sky covering a very large number of stars, combined with a flexible observing strategy.

Table 3 Examples for transit parameters in our Solar System, for the hot Jupiter planet CoRoT-1b [17, 145] and the super-Earths CoRoT-7b [218]

1.2 A2 Asteroseismology: a technique for determining highly accurate stellar and planetary parameters

1.2.1 Properties of stellar oscillations

Modes of stellar oscillations can be described by spherical harmonics Yℓ,m(𝜃,ϕ) as functions of position (𝜃, ϕ) on the stellar surface. The eigenfrequencies ν n,,m are described by the three “quantum numbers” (n,,m), where n is the radial order, the latitudinal degree, and m azimuthal order of the spherical harmonic. For a spherical star there is no dependence on the azimuthal order m; but this degeneracy is broken by rotation and/or magnetic fields. For slow rotation, the frequencies ν n,ℓ,m=ν n,ℓ+m<Ω>, where m belongs to {−,}, and <Ω> is a weighted average of the interior rotation depending on the internal structure of the star and the particular eigenmode. This can be used to probe the internal angular velocity of the star. Measurements of modes with values only up to 3 are expected for PLATO 2.0 targets; since the stellar disk cannot be resolved the signal from modes of higher degree is strongly suppressed by averaging over regions with different oscillation phases.

The oscillation frequencies, including the rotational splitting, are found by fitting peaks in the power spectrum of the light curve. Determining frequencies of modes with =0,1,2,3 with the solar data is quite straightforward giving estimated errors <0.1 μHz, while for the 137 day run on HD 49385, we can extract frequencies with errors ∼0.3 μHz. The goal with the much longer monitoring to be performed with PLATO 2.0 is to achieve accuracies ∼0.1 μHz.

The power spectra show characteristic spacings between the peaks. These are usually described in terms of separations such as the large separations Δ =ν n, ν n−1, between modes of the same degree and adjacent n values and the small separations, e.g., δ 02=ν n,0ν n−1,2 between the narrowly separated peaks corresponding to modes =0,2. Additionally we have the small separations δ 01=ν n,0−(ν n−1,1+ν n,1)/2. These are particularly valuable when only modes of degree =0,1 can be reliably determined. The separations provide diagnostic information on the stellar internal structure near the core and hence information on the age of the star. The large separations provide a measurement of the star’s acoustic radius, i.e., the travel time of a sound wave from the stellar centre to the surface, which is related to the stellar mean density ∼ M/R 3, while the small separations such as δ 01, δ 02 give diagnostics of the interior structure. Periodic modulations in the frequencies or separations give diagnostics of the location of the boundaries of convective cores and envelopes, as well as properties of the helium ionization zone (e.g., [14, 87, 174, 226, 249, 311]. The outer layers of the star are poorly understood and their contribution to the frequencies must be modeled or corrected for in the asteroseismic analysis [194, 308].

1.2.2 Asteroseismic inferences

From the frequencies determined from the power spectrum of the light curve we need to extract physical information. There are several techniques for this, the choice depending on the quality of the data and the type of information desired, ranging from overall properties such as mass and radius of the star to detailed information about its internal structure.

We first consider the case where the S/N ratio in the seismic data is insufficient to allow robust extraction of individual p mode frequencies; here it may still be possible to extract average estimates of the large and perhaps small separations < Δ0 >< Δ1 >, < d 01 >, < d 02 < and their ratios over one or more frequency ranges, owing to their regularity. For very low signal-to-noise data the mean large separation > Δ <, some indication of its variation with frequency, and possibly an average value of the small separation d 02, can be determined from frequency-windowed autocorrelation of the time series [263, 310, 312]. These average values provide a set of seismic data well-suited to constraining the exoplanet host star parameters (cf. [77]). Coupled with classical observations of L, T e f f , [Fe/H], log g delivered by Gaia (or even more precisely by other means) this has considerably better diagnostic power than the classical observables alone.

For most stars measurement of the average large separation should allow the stellar density to be constrained to a precision of several percent from model fitting (e.g., [388]). With an accurate knowledge of the effective temperature and/or luminosity, a seismic radius can be determined with a similar precision. The use of the average large separation together with the radius from Gaia can also provide a seismic mass with a precision higher than provided by the classical observables alone. For example, scaling relations relate the averaged large separation, > Δν <, and the frequency at maximum power, ν max, to the mass, radius and effective temperature of the star [193], leading to:

$$\begin{array}{@{}rcl@{}} \frac{R}{R_{sun} }&=&\left({\frac{135~\mu \text{Hz}}{\left\langle {\Delta \nu} \right\rangle }} \right)^{2}\left({\frac{\nu_{\max } }{3050~\mu \text{Hz}}} \right)\left({\frac{T_{\mathit{eff}} }{5777K}} \right)^{1/2};\frac{M}{M_{sun} }=\left({\frac{135~\mu \text{Hz}}{\left\langle {\Delta \nu} \right\rangle }} \right)^{4}\\ &&\times\left({\frac{\nu_{\max } }{3050~\mu \text{Hz}}} \right)^{3}\left({\frac{T_{\mathit{eff}} }{5777K}} \right)^{3/2} \end{array} $$

where the radius and mass are normalized to the solar values.

Mass and radius determinations that are based on average seismic quantities will also be used to yield a first, very rapid determination of mass and radius for a large sample of stars. These seismic radii and masses will also serve as initial input for the more precise forward and inversion techniques described below.

Averaged oscillation quantities or individual frequencies can be used in forward model fitting which has been extensively used. Here one compares an observed data set with the predictions from a grid of evolutionary stellar models in order to find the model that best fits the observables (e.g., [2, 52, 245, 248]). The grid is composed of stellar models that are computed under a range of assumptions about the physical processes that govern stellar evolution. The search in the grid is restricted to satisfy the fundamental properties of the star (magnitude, effective temperature, gravity, metallicity, projected rotational velocity (mV, Teff, log g, [Fe/H], v sin i,..) and the oscillation observables. In practice one seeks to minimize the differences between observed and computed, seismic and non-seismic, parameters. Several methods can be used to carry out such minimization (see for instance [295, 350]). The unknown effect of the surface layers on the absolute values of the frequencies can be overcome by different techniques (e.g., [194, 308]). The best fit model then gives values for the mass, radius, age and internal structure of the stars. If individual frequencies are used the fit is typically overdetermined, and significant differences between the observed and model values may indicate inadequacies in the stellar modelling being used.

The minimum seismic information necessary in the fitting process can be estimated following Metcalfe et al. [245]. The authors found that with half a dozen surface-corrected frequencies available at each of =0 and =1, it becomes possible to constrain the model-dependent masses to within 3 %, and the corresponding ages that the star has spent on the main sequence to within 5 %, if the heavy-element abundances are known to within a factor of two. Note that this result assumes that the model physics is correct. With the addition of more frequency estimates (i.e., of =2 modes, and of more overtones) further improvement of the parameter uncertainties will be possible. For a main-sequence target observed at m V =11, we would expect to be able to measure more than ten overtones of its =0,1 and 2 frequencies.

Individual frequencies can de determined as in Appourchaux et al. [10]. When this is done, more precise and detailed information about the stars can also be obtained through inversion techniques.

The probably most suitable technique is model-independent and seeks to infer the internal density profile inside a star which best fits a set of observed frequencies (see e.g., [309] for more details on the technique. Alternative inversion techniques are described in e.g., [300]). Once we know the density profile, the total mass of the star can be simply computed as the integral of the density over the radius of the star. It is assumed that this will be determined from Gaia results. Note that the regions where the density is least well constrained make only a small contribution to the total mass: in the centre the radius r is small and in the outer layers the density is small. The resulting density profiles can then be compared with those predicted by stellar evolution models to estimate the evolutionary age of the star. The analysis is iterative, with the mass and radius for the initial model derived for instance from observed average seismic properties, as discussed above. It should also be stressed that the derivation of a model-independent mass requires that the radius R of the star is determined by non-seismic means. As mentioned earlier, radii of the PLATO 2.0 exoplanet host stars will be known to an accuracy better than 2 % thanks to Gaia, which translates into a well constrained model-independent exoplanet host star mass with a relative precision better than 2 %.

As a star evolves towards the end of, and beyond, the main sequence it becomes more centrally condensed. As a result, an increasing number of frequencies of oscillation modes behave like g modes in the core and p modes in the envelope (“mixed modes”). Their frequencies deviate from the regular spacing of asymptotic pure p modes and can therefore be identified. This behavior changes very quickly with stellar age, and the modes therefore yield a strong (though model-dependent) constraint on the age of the star. Both CoRoT and Kepler have observed stars presenting such modes (e.g., [95, 246]). For the non-seismic parameters, the largest source of observational uncertainty comes from the estimated heavy-element abundances. From the luminosity precision expected from Gaia, it would in principle be possible to constrain the abundances seismically to a precision of about 10 % [245], thus further improving the accuracy of the star’s mass and age.

1.2.3 Effects of rotation

As mentioned above, stellar rotation induces a splitting of the frequencies according to the azimuthal order m of the mode, by an amount which is essentially a weighted average of the internal rotation rate. The weight function (the so-called rotational kernel) can be determined given the inferred structure of the star. For predominantly acoustic modes most weight is given to the stellar envelope, with little dependence on the mode, and the rotational splitting thus predominantly gives an average of the rotation rate in the outer parts of the star. If in addition the surface rotation rate can be determined from spot modulation, as has been done in several cases from CoRoT and Kepler data (e.g., Nielsen et al. [273]), some indication can be obtained of the variation of rotation with depth. In evolved stars, on the other hand, the observation of mixed modes provides information about the rotation in the deep interior (e.g., [28, 96, 265]).

Equally important are the inferences that can be made from the amplitudes of the rotationally split components. Given the stochastic nature of the mode excitation, all components are expected to be excited to the same intrinsic amplitude, on average. However, the observed amplitudes depend on the inclination of the rotation axis relative to the line of sight [148]. If the rotation axis points towards the observer only the m=0 modes are visible, while if it is in the plane of the sky only modes where m is even are seen. For intermediate inclination all 2+1 components are visible, and from their relative amplitudes the inclination can be inferred. This is particularly interesting in the case of stars where planetary systems have been detected using the transit technique, as will be the case for PLATO 2.0; here such observations can test the alignment or otherwise of the orbital planes of the planets with the stellar equator [69, 149].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rauer, H., Catala, C., Aerts, C. et al. The PLATO 2.0 mission. Exp Astron 38, 249–330 (2014). https://doi.org/10.1007/s10686-014-9383-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-014-9383-4

Keywords

Navigation