Skip to main content
Log in

The e-ASTROGAM mission

Exploring the extreme Universe with gamma rays in the MeV – GeV range

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

e-ASTROGAM (‘enhanced ASTROGAM’) is a breakthrough Observatory space mission, with a detector composed by a Silicon tracker, a calorimeter, and an anticoincidence system, dedicated to the study of the non-thermal Universe in the photon energy range from 0.3 MeV to 3 GeV – the lower energy limit can be pushed to energies as low as 150 keV, albeit with rapidly degrading angular resolution, for the tracker, and to 30 keV for calorimetric detection. The mission is based on an advanced space-proven detector technology, with unprecedented sensitivity, angular and energy resolution, combined with polarimetric capability. Thanks to its performance in the MeV-GeV domain, substantially improving its predecessors, e-ASTROGAM will open a new window on the non-thermal Universe, making pioneering observations of the most powerful Galactic and extragalactic sources, elucidating the nature of their relativistic outflows and their effects on the surroundings. With a line sensitivity in the MeV energy range one to two orders of magnitude better than previous generation instruments, e-ASTROGAM will determine the origin of key isotopes fundamental for the understanding of supernova explosion and the chemical evolution of our Galaxy. The mission will provide unique data of significant interest to a broad astronomical community, complementary to powerful observatories such as LIGO-Virgo-GEO600-KAGRA, SKA, ALMA, E-ELT, TMT, LSST, JWST, Athena, CTA, IceCube, KM3NeT, and the promise of eLISA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Aartsen, M.G., et al.: Science 342, 1242856 (2013)

    Article  Google Scholar 

  2. Abbott, B.P., et al.: Phys. Rev. Lett. 116, 061102 (2016)

    Article  ADS  Google Scholar 

  3. Abdo, A.A., et al.: Science 326, 1512 (2009)

    Article  ADS  Google Scholar 

  4. Abdo, A.A., et al.: ApJ 709, 152 (2010)

    Article  ADS  Google Scholar 

  5. Abdo, A.A., et al.: Science 331, 739 (2011)

    Article  ADS  Google Scholar 

  6. Acero, F., et al.: ApJ 224, 8 (2016)

    Article  Google Scholar 

  7. Acero, F., et al.: ApJS 218, 23 (2015)

    Article  ADS  Google Scholar 

  8. Ackermann, M., et al.: Science 334, 1103 (2011)

    Article  ADS  Google Scholar 

  9. Ackermann, M., et al.: Science 339, 807 (2013)

    Article  ADS  Google Scholar 

  10. Ackermann, M., et al.: Phys. Rev. D 89(042001) (2014)

  11. Ackermann, M., et al.: Science 345, 554 (2014)

    Article  ADS  Google Scholar 

  12. Ackermann, M., et al.: ApJ 793, 64 (2014)

    Article  ADS  Google Scholar 

  13. Ackermann, M., et al.: ApJ 799, 1 (2015)

    Article  Google Scholar 

  14. Ackermann, M., et al.: Phys. Rev. Lett 115, 231301 (2015)

    Article  ADS  Google Scholar 

  15. Ackermann, M., et al.: ApJ 824, 2 (2016)

    Article  Google Scholar 

  16. Ackermann, M., et al.: A&A 586, A71 (2016)

    Article  ADS  Google Scholar 

  17. Adriani, O., et al.: Nucl. Instr. Methods A 511, 72 (2003)

    Article  ADS  Google Scholar 

  18. Ahangarianabhari, M., et al.: Nucl. Inst. Methods Phys. Res. A 770, 155 (2015)

    Article  ADS  Google Scholar 

  19. Ajello, M., et al.: ApJ 699, 603 (2009)

    Article  ADS  Google Scholar 

  20. Ajello, M., et al.: ApJ 751, 108 (2012)

    Article  ADS  Google Scholar 

  21. Albert, A., et al.: JCAP 1410, 023 (2014)

    Article  ADS  Google Scholar 

  22. Alcaraz, J., Alpat, B., Ambrosi, G., et al.: Nucl. Instr. Methods A 593, 376 (2008)

    Article  ADS  Google Scholar 

  23. Arik, E., et al.: J. Cosmology Astropart. Phys. 02, 008 (2009)

    Article  ADS  Google Scholar 

  24. Bagliesi, M.G., et al.: Nucl. Phys. B Proc. Suppl. 215, 344 (2011)

    Article  ADS  Google Scholar 

  25. Band, D., et al.: ApJ 413, 281 (1993)

    Article  ADS  Google Scholar 

  26. Baumgartner, W.H., et al.: ApJS 207, 19 (2013)

    Article  ADS  Google Scholar 

  27. Benhabiles-Mezhoud, H., et al.: ApJ 763, 98 (2013)

    Article  ADS  Google Scholar 

  28. Bergström, L.: Nucl. Phys. B325, 647 (1988)

    ADS  Google Scholar 

  29. Berlin, T.H., Madansky, L.: Phys. Rev. 78, 623 (1950)

    Article  ADS  Google Scholar 

  30. Bernard, D.: Nuclear Instr. and Methods in Phys Res. A 729, 765 (2013)

    Article  ADS  Google Scholar 

  31. Bildsten, L., Salpeter, E.E., Wasserman, I.: ApJ 408, 615 (1993)

    Article  ADS  Google Scholar 

  32. Bird, A.J., et al.: ApJS 186, 1 (2010)

    Article  ADS  Google Scholar 

  33. Bloser, P.F., et al.: Nucl. Instr. Methods A 812, 92 (2016)

    Article  ADS  Google Scholar 

  34. Boddy, K.K., Kumar, J.: AIP Conf. Proc. 1743(020009 (2016)

  35. Boehm, C.T., Ensslin, A., Silk, J.: J.Phys.G 30, 279 (2004)

    Article  ADS  Google Scholar 

  36. Boehm, C.T., et al.: Phys. Rev. Lett. 92, 101301 (2004)

    Article  ADS  Google Scholar 

  37. Breitschwerdt, D., et al.: A&A 245, 79B (1991)

    ADS  Google Scholar 

  38. Bringmann, T., et al.: arXiv:1610.04613 (2016)

  39. Buehler, R., et al.: Measuring polarization of gamma-rays with Fermi, Presented at SciNeGHE Trieste (2010). http://scineghe2010.ts.infn.it/programmaScientifico.php

  40. Bulgarelli, A., et al.: Proc. SPIE 8453, 845335 (2012)

    Article  Google Scholar 

  41. Campana, R., et al.: Exp. Astron. 37, 599 (2014)

    Article  ADS  Google Scholar 

  42. Carlson, E., Profumo, S.: Phys. Rev. D 90, 023015 (2014)

    Article  ADS  Google Scholar 

  43. Cheung, C.C., et al.: ApJ 826, 142 (2016)

    Article  ADS  Google Scholar 

  44. Churazov, E., et al.: Nature 512, 406 (2014)

    Article  ADS  Google Scholar 

  45. Churazov, E., et al.: ApJ 812, 62 (2015)

    Article  ADS  Google Scholar 

  46. Clayton, D.D., Hoyle, F.: ApJ 187, L101 (1974)

    Article  ADS  Google Scholar 

  47. Crocker, R., Aharonian, F.: Phys. Rev. Lett. 106, 1102 (2011)

    Article  Google Scholar 

  48. De Angelis, A., Mansutti, O., Roncadelli, M.: Phys. Lett. B 659, 847 (2008)

    Article  ADS  Google Scholar 

  49. De Angelis, A., Pimenta, M.J.: Introduction to Particle and Astroparticle Physics–Questions to the Universe. Springer (2015)

  50. Danzmann, K., et al.: eLISA White Paper, https://www.elisascience.org/multimedia/document/white-paper-pdf

  51. Diehl, R.: Rep. Progr. Phys., 76(2), 026301 (2013)

    Article  ADS  Google Scholar 

  52. Diehl, R., et al.: Science 345, 1162 (2014)

    Article  ADS  Google Scholar 

  53. Diehl, R., et al.: A&A 574, A72 (2015)

    Article  ADS  Google Scholar 

  54. Diehl, R., Timmes, F.X.: PASP 110, 748 (1998)

    Article  Google Scholar 

  55. Essig, R., et al.: JHEP 1, 193 (2013)

    Article  ADS  Google Scholar 

  56. Everett, J., et al.: ApJ 674, 258 (2008)

    Article  ADS  Google Scholar 

  57. Forot, M., et al.: ApJ 688, L29 (2008)

    Article  ADS  Google Scholar 

  58. Fox, A., et al.: ApJ 799, 7 (2015)

    Article  ADS  Google Scholar 

  59. Funk, S.: Ann. Rev. Nucl. Part. Sci. 65, 245 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  60. Gal-Yam, A., et al.: Nature 462, 624 (2009)

    Article  ADS  Google Scholar 

  61. Galanti, G., Roncadelli, M.: arXiv:1305.2114 (2013)

  62. Gatti, E., Rehak, P.: Nucl. Instr. and Meth. A 225, 608 (1984). http://www.pnsensor.de/Welcome/Detectors/SDD/

    Article  Google Scholar 

  63. Gevin, O., et al.: Nucl. Inst. Methods Phys. Res. A 695, 415 (2012)

    Article  ADS  Google Scholar 

  64. Ghisellini, G., et al.: MNRAS 405, 387 (2010)

    ADS  Google Scholar 

  65. Ghisellini, G., et al.: MNRAS 432, 2818 (2013)

    Article  ADS  Google Scholar 

  66. Gómez, S., et al.: Proc. SPIE 9899, 98990G (2016). doi:10.1117/12.2231095

  67. Gomez-Gomar, J., Hernanz, M., Jose, J., Isern, J.: MNRAS 296, 913 (1998)

    Article  ADS  Google Scholar 

  68. Götz, D., Laurent, P., Antier, S., et al.: MNRAS, 444, 2776 (2014)

  69. Grefenstette, B.W., et al.: Nature 506, 339 (2014)

    Article  ADS  Google Scholar 

  70. Grenier, I.A., Black, J.H., Strong, A.W.: ARA&A 53, 199 (2015)

    Article  ADS  Google Scholar 

  71. Hernanz, M., Jose, J.: New Astron. Rev. 48, 35 (2004)

    Article  ADS  Google Scholar 

  72. Hillebrandt, W., Kromer, M., Röpke, F., Ruiter, A.: Front. Phys. 8, 116 (2013)

    Article  Google Scholar 

  73. Hillebrandt, W., Niemeyer, J.C.: ARA&A 38, 191 (2000)

    Article  ADS  Google Scholar 

  74. Indriolo, N., McCall, B.: ApJ 745, 91 (2012)

    Article  ADS  Google Scholar 

  75. Isern, J., et al.: A&A 588, A67 (2016)

    Article  ADS  Google Scholar 

  76. Jaeckel, J., Ringwald, A.: Ann. Rev. Nucl. Part. Sci. 60, 405 (2010)

    Article  ADS  Google Scholar 

  77. Jogler, T., Funk, S.: ApJ 816, 100 (2016)

    Article  ADS  Google Scholar 

  78. José, J., Hernanz, M.: J. Phys. G: Nucl. Phys. 34, R431 (2007)

    Article  ADS  Google Scholar 

  79. Kadler, M., et al.: Nat. Phys. 12, 807 (2016)

    Article  Google Scholar 

  80. Kanbach, G., et al.: Nucl. Instr. Meth. Phys. Res. A 541, 310 (2005)

    Article  ADS  Google Scholar 

  81. Kerzendorf, W., Sim, S.: MNRAS 440, 387 (2014)

    Article  ADS  Google Scholar 

  82. Kirsch, M.G.F., et al.: XMM-Newton (cross)-calibration, arXiv:astro-ph/0407257 (2004)

  83. Kissmann, R., et al.: Astropart. Phys. 70, 39 (2015)

    Article  ADS  Google Scholar 

  84. Koljonen, K., et al.: MNRAS 406, 307 (2010)

    Article  ADS  Google Scholar 

  85. Krause, M.G.H., et al.: A&A 578, A113 (2015)

    Article  ADS  Google Scholar 

  86. Kretschmer, K., et al.: A&A 559, A99 (2013)

    Article  ADS  Google Scholar 

  87. Labanti, C., et al.: Proc. SPIE 7021, 702116 (2008)

    Article  Google Scholar 

  88. Limongi, M., Chieffi, A.: ApJ 647, 483 (2006)

    Article  ADS  Google Scholar 

  89. Limousin, O., et al.: IEEE Trans. Nucl. Sci. 52, 1595 (2005)

  90. Marisaldi, M., et al.: IEEE Trans. Nucl. Sci. 52, 1842 (2005)

    Article  ADS  Google Scholar 

  91. McClelland, D., et al.: LIGO Scientific Collaboration, Instrument Science White Paper, LIGO Document T1500290-v2 (2015)

  92. McConnell, M.L.: accepted for publication in New Astronomy Review, arXiv:1611.06579 (2016)

  93. Meyer, M., et al.: arXiv:1609.02350 (2016)

  94. Moiseev, A.A., et al.: Astropart. Phys. 27, 339 (2007)

    Article  ADS  Google Scholar 

  95. Moiseev, A.A., et al.: arXiv:1508.07349 (2007)

  96. Nakar, E.: Phys. Rep. 442, 166 (2007)

    Article  ADS  Google Scholar 

  97. Nomoto, K., Thielemann, F.-K., Yokoi, K.: ApJ 286, 644 (1984)

    Article  ADS  Google Scholar 

  98. Odaka, H., et al.: Nucl. Instr. Methods A 695, 179 (2012)

    Article  ADS  Google Scholar 

  99. Olive, K.A., et al.: Chin. Phys. C 38, 090001 (2014). and 2015 update

    Article  ADS  Google Scholar 

  100. Olsen, H.: Phys. Rev. 131, 406 (1963)

    Article  ADS  Google Scholar 

  101. Paciesas, W.S., et al.: ApJS 122, 465 (1999)

    Article  ADS  Google Scholar 

  102. Paliya, V.S., et al.: ApJ 825, 74 (2016)

    Article  ADS  Google Scholar 

  103. Patricelli, B., et al.: arXiv:1606.06124 (2016)

  104. Perotti, F., et al.: Nucl. Instr. Meth. Phys. Res. A 556, 228 (2006)

    Article  ADS  Google Scholar 

  105. Petrović, J., Pasquale, S.D., Zaharijaš, G.: J. Cosmology Astropart. Phys. 10, 052 (2014)

    Article  ADS  Google Scholar 

  106. Phillips, M.M.: ApJ 413, L105 (1993)

    Article  ADS  Google Scholar 

  107. Piano, G., et al.: A&A 545, A110 (2012)

    Article  ADS  Google Scholar 

  108. Prada, F., et al.: Phys. Rev. Lett. 93, 241301 (2004)

  109. Punturo, M., et al.: Classical and Quantum Gravity 27, 194002 (2010)

  110. Recchia, S., et al.: MNRAS 462, L88 (2016)

    Article  ADS  Google Scholar 

  111. Recchia, S., Blasi, P., Morlino, G.: MNRAS 462, 4227 (2016)

    Article  ADS  Google Scholar 

  112. Ringwald, A., Rosenberg, L.J., Rybka, G.: Axions and other similar particles. In: Patrignani, C. et al. (eds.) (Particle Data Group), Chin. Phys. C, vol. 40, p 100001 (2016)

  113. Rudaz, S., et al.: Phys. Rev. Lett. 56, 2128 (1986)

    Article  ADS  Google Scholar 

  114. Ruiz-Lapuente, P., et al.: ApJ 820, 142 (2016)

    Article  ADS  Google Scholar 

  115. Romero, G.E., Vieyro, F.L., Chaty, S.: A&A 562, L7 (2014)

    Article  ADS  Google Scholar 

  116. Roques, J.P., et al.: A&A 411, L91 (2003)

    Article  ADS  Google Scholar 

  117. Roques, J.P., et al.: ApJL 813, 22 (2015)

    Article  ADS  Google Scholar 

  118. Schlickeiser, R., et al.: ApJ 787, 35 (2014)

    Article  ADS  Google Scholar 

  119. Schönfelder, V., et al.: A&A 120 (1996)

  120. Senno, N., et al.: Phys. Rev. D 93, 083003 (2016)

    Article  ADS  Google Scholar 

  121. Siegert, T., et al.: Nature 531, 341 (2016)

    Article  ADS  Google Scholar 

  122. Siegert, T., et al.: A&A 595, 25 (2016)

    Article  Google Scholar 

  123. Skilling, J., Strong, A.W.: A&A 53, 253 (1976)

    ADS  Google Scholar 

  124. Skilling, J., Strong, A.W.: Nature 454, 1096 (1976)

    Google Scholar 

  125. Tagliaferri, G., et al.: ApJ 807, 167 (2015)

    Article  ADS  Google Scholar 

  126. Takahashi, T., Uchiyama, Y., Stawarz, Ł.: Astropart. Phys. 43, 142 (2013)

    Article  ADS  Google Scholar 

  127. Takami, H., Kyutoku, K., Ioka, K.: Phys. Rev. D 89, 063006 (2014)

    Article  ADS  Google Scholar 

  128. Tanaka, T., et al.: ApJ 685, 988–1004 (2008)

    Article  ADS  Google Scholar 

  129. Tatischeff, V., Hernanz, M.: ApJ 663, L101 (2007)

    Article  ADS  Google Scholar 

  130. Tavani, M., et al.: Nature 462, 620 (2009)

    Article  ADS  Google Scholar 

  131. Tavani, M., et al.: A&A 502, 995 (2009)

    Article  ADS  Google Scholar 

  132. Tavani, M., et al.: Science 331, 736 (2011)

    Article  ADS  Google Scholar 

  133. Tavani, M., et al.: Nucl. Phys. (Proc. Suppl.) 131, 243–244 (2013)

    Google Scholar 

  134. The, L.-S., Burrows, A.: ApJ 786, 141 (2014)

    Article  ADS  Google Scholar 

  135. Tsai, Y.S.: Rev. Mod. Phys. 46, 815 (1974)

    Article  ADS  Google Scholar 

  136. Tsygankov, S.S., Krivonos, R.A., Lutovinov, A.A., et al.: MNRAS 458, 3411 (2016)

    Article  ADS  Google Scholar 

  137. Uchiyama, Y., et al.: ApJ 749, 35 (2012)

    Article  ADS  Google Scholar 

  138. Veres, P., Meszaros, P.: ApJ 787, 168 (2014)

    Article  ADS  Google Scholar 

  139. Volonteri, M., et al.: MNRAS 416, 216 (2011)

    ADS  Google Scholar 

  140. von Ballmoos, P.: Hyperfine Interact. 228(1-3), 91 (2014)

    Article  Google Scholar 

  141. Walker, M.G., et al.: ApJ 704, 1274 (2009)

    Article  ADS  Google Scholar 

  142. Wang, L.J., et al.: ApJ 823, 15 (2016)

    Article  ADS  Google Scholar 

  143. Wang, X., Loeb A.: arXiv:1607.06472v1.pdf (2016)

  144. Wick, G.C.: Phys. Rev. 81, 467 (1951)

    Article  ADS  Google Scholar 

  145. Woosley, S.E., Kasen, D., Blinnikov, S., Sorokina, E: ApJ 662, 487 (2007)

    Article  ADS  Google Scholar 

  146. Wouters, D., Brun, P.: Phys. Rev. D 86, 043005 (2012)

    Article  ADS  Google Scholar 

  147. Yang, C.N.: Phys. Rev. 77, 722 (1950)

    Article  ADS  Google Scholar 

  148. Zdziarski, A.A., Stawarz, Ł., Pjanka, P., Sikora, M.: MNRAS 440, 2238 (2014)

    Article  ADS  Google Scholar 

  149. Zhang, H., Boettcher, M.: ApJ 774, 18 (2013)

    Article  ADS  Google Scholar 

  150. Zoglauer, A., Andritschke, R., Schopper, F.: New A Rev. 50, 629 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The contribution by P. Couzin (TAS-F), G. Cluzet (TAS-F), X. Roser (TAS-F), A. Laurens (CNES), D. Delrieu (CNES), M.-F. DelCastillo (CNES), C. Contini (CGS), P. Lattanzi (CGS), B. Morelli (CGS), A. Spalla (CGS), is acknowledged. The research leading to these results has received funding from the European Union’s Horizon 2020 Programme under the AHEAD project (grant agreement n. 654215).

Author information

Authors and Affiliations

Authors

Consortia

Corresponding authors

Correspondence to A. De Angelis or V. Tatischeff.

Additional information

The e-ASTROGAM Collaboration

The full author list and affiliations are given at the end of the paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

The e-ASTROGAM Collaboration., De Angelis, A., Tatischeff, V. et al. The e-ASTROGAM mission. Exp Astron 44, 25–82 (2017). https://doi.org/10.1007/s10686-017-9533-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-017-9533-6

Keywords

Navigation