Skip to main content
Log in

The tail behaviour of a random sum of subexponential random variables and vectors

  • Published:
Extremes Aims and scope Submit manuscript

Abstract

Let \(\left\{ X,X_{i},i=1,2,...\right\} \) denote independent positive random variables having common distribution function (d.f.) F(x) and, independent of X, let ν denote an integer valued random variable. Using X 0=0, the random sum Z=∑ i=0 ν X i has d.f. \(G(x)=\sum_{n=0}^{\infty }\Pr\{\nu =n\}F^{n\ast }(x)\) where F n(x) denotes the n-fold convolution of F with itself. If F is subexponential, Kesten’s bound states that for each ε>0 we can find a constant K such that the inequality

$$ 1-F^{n\ast }(x)\leq K(1+\varepsilon )^{n}(1-F(x))\, , \qquad n\geq 1,x\geq 0 \, , $$

holds. When F is subexponential and E(1 +ε)ν<∞, it is a standard result in risk theory that G(x) satisfies

$$ 1 - G{\left( x \right)} \sim E{\left( \nu \right)}{\left( {1 - F{\left( x \right)}} \right)},\,\,x \to \infty \,\,{\left( * \right)} $$

In this paper, we show that (*) holds under weaker assumptions on ν and under stronger conditions on F. Stam (Adv. Appl. Prob. 5:308–327, 1973) considered the case where \( \overline{F}(x)=1-F(x)\) is regularly varying with index –α. He proved that if α>1 and \(E{\left( {\nu ^{{\alpha + \varepsilon }} } \right)} < \infty \), then relation (*) holds. For 0<α<1, it is sufficient that Eν<∞. In this paper we consider the case where \(\overline{F}(x)\) is an O-regularly varying subexponential function. If the lower Matuszewska index \(\beta (\overline{F})<-1\), then the condition \({\text{E}}{\left( {\nu ^{{{\left| {\beta {\left( {\overline{F} } \right)}} \right|} + 1 + \varepsilon }} } \right)} < \infty\) is sufficient for (*). If \(\beta (\overline{F} )>-1\), then again Eν<∞ is sufficient. The proofs of the results rely on deriving bounds for the ratio \(\overline{F^{n\ast }}(x)/\overline{F} (x)\). In the paper, we also consider (*) in the special case where X is a positive stable random variable or has a compound Poisson distribution derived from such a random variable and, in this case, we show that for n≥2, the ratio \(\overline{F^{n\ast }}(x)/\overline{F}(x)\uparrow n\) as x↑∞. In Section 3 of the paper, we briefly discuss an extension of Kesten’s inequality. In the final section of the paper, we discuss a multivariate analogue of (*).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asmussen, S.: Ruin Probability. World Scientific, Singapore (2000)

    Google Scholar 

  • Athreya, K.B., Ney, P.E.: Branching Processes. Springer, Berlin (1972)

    MATH  Google Scholar 

  • Baltrūnas, A., Omey, E.: The rate of convergence for subexponential distributions. Lith. Math. J. 38(1), 1–14 (1998)

    Article  Google Scholar 

  • Baltrūnas, A., Omey, E.: The rate of convergence for subexponential distributions and densities. Lith. Math. J. 42(1), 1–14 (2002)

    Article  Google Scholar 

  • Baltrūnas, A., Omey, E., Van Gulck, S.: Hazard rates and subexponential distributions. Publ. Inst. Math. (Bélgr.) 80(94), 29–46 (2006)

    Article  Google Scholar 

  • Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variation. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  • Cline, D.B.H., Resnick, S.I.: Multivariate subexponential distributions. Stoch. Process Their Appl. 42, 49–72 (1992)

    Article  MATH  Google Scholar 

  • Chistyakov, V.P.: A theorem on sums of independent positive random variables and its applications to branching random processes. Theory Probab. Appl. 9, 640–648 (1964)

    Article  Google Scholar 

  • Embrechts, P., Kluppelberg, C., Mikosch, T.: Modelling Extremal Events. Springer, Berlin (1997)

    MATH  Google Scholar 

  • Embrechts, P., Maejima, M., Omey, E.: Some limit theorems for generalized renewal measures. J. London Math. Soc. 31, 184–192 (1985)

    Article  Google Scholar 

  • Faÿ, G., González-Arévalo, B., Mikosch, T., Samorodnitsky, G.: Modeling teletraffic arrivals by a Poisson cluster process. Queueing Syst. 54(2), 121–140 (2006)

    Article  MATH  Google Scholar 

  • Gawronski, W.: On the bell-shape of stable densities. Ann. Probab. 12, 230–242 (1984)

    MATH  Google Scholar 

  • Kalma, J.N.: Generalized Renewal Measures. Ph.D. thesis, University of Groningen. Nova Press, Groningen (1972)

    Google Scholar 

  • Karlin, S.: Total Positivity, vol. I. Stanford University Press, Stanford, CA (1968)

    Google Scholar 

  • Lukacs, E.: Characteristic Functions. Griffin, London (1960)

    MATH  Google Scholar 

  • Mallor, F., Omey, E.: Univariate and multivariate weighted renewal theory. In: Collection of Monographies of the Department of Statistics and Operations Research, vol. 2. Public University of Navarra, Pamplona, Spain (ISBN 84-9769-127-X) (2006)

  • Mikosch, T., Nagaev, A.V.: Large deviations of heavy-tailed sums with applications in insurance. Extremes 1(1), 81–110 (1998)

    Article  MATH  Google Scholar 

  • Mikosch, T., Nagaev, A.: Rates in approximations to ruin probabilities for heavy-tailed distributions. Extremes 4(1), 67–78 (2001)

    Article  MATH  Google Scholar 

  • Omey, E.: Random sums of random vectors. Publ. Inst. Math. (Belgr.) (N.S.) 48(62), 191–198 (1990)

    Google Scholar 

  • Omey, E.: Subexponential distribution functions in Rd. J. Math. Sci. 138(1), 5434–5449 (2006)

    Article  MATH  Google Scholar 

  • Omey, E., Mallor, F., Santos, J.: Multivariate subexponential distributions and random sums of random vectors. Adv. Appl. Prob. 38(4), 1028–1046 (2006)

    Article  MATH  Google Scholar 

  • Rolski, T., Schmidli, H., Schmidt, V., Teugels, J.: Stochastic Processes for Insurance and Finance. Wiley, Chichester (1999)

    MATH  Google Scholar 

  • Samorodnitsky, G., Taqqu, M.: Stable Non-Gaussian Random Processes. Chapman and Hall, London (1994)

    MATH  Google Scholar 

  • Shneer, V.V.: Estimates for the distributions of the sums of subexponential random variables. Sib. Math. J. 45(6), 1143–1158 (2004)

    Article  Google Scholar 

  • Stam, A.J.: Regular variation of the tail of a subordinated probability distribution. Adv. Appl. Prob. 5, 308–327 (1973)

    Article  MATH  Google Scholar 

  • Teugels, J.L., Omey, E.: Weighted renewal functions: a hierarchical approach. Adv. Appl. Probab. 34, 394–415 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rein Vesilo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daley, D.J., Omey, E. & Vesilo, R. The tail behaviour of a random sum of subexponential random variables and vectors. Extremes 10, 21–39 (2007). https://doi.org/10.1007/s10687-007-0033-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10687-007-0033-3

Keywords

AMS 2000 Subject Classification

Navigation