Skip to main content
Log in

Convex geometry of max-stable distributions

  • Published:
Extremes Aims and scope Submit manuscript

Abstract

It is shown that max-stable random vectors in [0, ∞ )d with unit Fréchet marginals are in one to one correspondence with convex sets K in [0, ∞ )d called max-zonoids. The max-zonoids can be characterised as sets obtained as limits of Minkowski sums of cross-polytopes or, alternatively, as the selection expectation of a random cross-polytope whose distribution is controlled by the spectral measure of the max-stable random vector. Furthermore, the cumulative distribution function P ξ ≤ x of a max-stable random vector ξ with unit Fréchet marginals is determined by the norm of the inverse to x, where all possible norms are given by the support functions of (normalised) max-zonoids. As an application, geometrical interpretations of a number of well-known concepts from the theory of multivariate extreme values and copulas are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Artstein, Z., Vitale, R.A.: A strong law of large numbers for random compact sets. Ann. Probab. 3, 879–882 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  • Beirlant, J., Goegebeur, Y., Segers, J., Teugels, J.: Statistics of Extremes. Theory and Applications. Wiley, Chichester (2004)

    MATH  Google Scholar 

  • Berg, C., Christensen, J.P.R., Ressel, P.: Harmonic Analysis on Semigroups. Springer, Berlin (1984)

    MATH  Google Scholar 

  • Coles, S.G., Hefferman, J.E., Tawn, J.A.: Dependence measures for extreme value analyses. Extremes 2, 339–365 (1999)

    Article  MATH  Google Scholar 

  • Coles, S.G., Tawn, J.A.: Modelling extreme multivariate events. J. R. Stat. Soc. Ser. B Stat. Methodol. 53, 377–392 (1991)

    MATH  MathSciNet  Google Scholar 

  • Davydov, Y., Molchanov, I., Zuyev, S.: Strictly stable distributions on convex cones. Electron. J. Probab. (2008, to appear)

  • de Haan, L.: A spectral representation for max-stable processes. Ann. Probab. 12, 1194–1204 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  • de Haan, L., de Ronde, J.: Sea and wind: multivariate extremes at work. Extremes 1, 7–45 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  • de Haan, L., Ferreira, A.: Extreme Value Theory. An Introduction. Springer, New York (2006)

    MATH  Google Scholar 

  • Einmahl, J.H.J., de Haan, L., Sinha, A.K.: Estimating the spectral measure of an extreme value distribution. Stoch. Process. Appl. 70, 143–171 (1997)

    Article  MATH  Google Scholar 

  • Falk, M.: A representation of bivariate extreme value distributions via norms on ℝ2. Extremes 9, 63–68 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Falk, M., Hüsler, J., Reiss, R.-D.: Laws of Small Numbers: Extremes and Rare Events, 2nd edn. Birkhäuser, Basel (2004)

    MATH  Google Scholar 

  • Falk, M., Reiss, R.-D.: On Pickands coordinates in arbitrary dimensions. J. Multivar. Anal. 92, 426–453 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Firey, W.J.: Some means of convex bodies. Trans. Am. Math. Soc. 129, 181–217 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  • Genest, C., Rivest, L.-P.: A characterization of Gumbel’s family of extreme value distributions. Stat. Probab. Lett. 8, 207–211 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  • Giné, E., Hahn, M.G., Vatan, P.: Max-infinitely divisible and max-stable sample continuous processes. Probab. Theory Relat. Fields 87, 139–165 (1990)

    Article  MATH  Google Scholar 

  • Grünbaum, B.: Convex Polytopes. Wiley, London (1967)

    MATH  Google Scholar 

  • Hall, P., Tajvidi, N.: Prediction regions for bivariate extreme events. Aust. N. Z. J. Stat. 46, 99–102 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Hürlimann, W.: Hutchinson-Lai’s conjecture for bivariate extreme value copulas. Stat. Probab. Lett. 61, 191–198 (2003)

    Article  MATH  Google Scholar 

  • Hüsler, J., Reiss, R.-D.: Maxima of normal random vectors: between independence and complete dependence. Stat. Probab. Lett. 7, 283–286 (1989)

    Article  MATH  Google Scholar 

  • Joe, H.: Multivariate Models and Dependence Concepts. Chapman & Hall, London (1997)

    MATH  Google Scholar 

  • Kotz, S., Nadarajah, S.: Extreme Value Distributions: Theory and Applications. Imperial College Press, London (2000)

    MATH  Google Scholar 

  • Molchanov, I.: Theory of Random Sets. Springer, London (2005)

    MATH  Google Scholar 

  • Nelsen, R.B.: Copulas and association. In: Dall’Aglio, G., Kotz, S., Salinetti, G. (eds.) Advances in Probability Distributions with Given Marginals, pp. 51–74. Kluwer, Dordrecht (1991)

    Google Scholar 

  • Nelsen, R.B.: An Introduction to Copulas. Lecture Notes in Statistics, vol. 139. Springer, New York (1999)

    Google Scholar 

  • Nelsen, R.B.: An Introduction to Copulas, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  • Pisier, G.: The Volume of Convex Bodies and Banach Space Geometry. Cambridge University Press, Cambridge (1989)

    MATH  Google Scholar 

  • Resnick, S.I.: Extreme Values, Regular Variation and Point Processes. Springer, Berlin (1987)

    MATH  Google Scholar 

  • Ricker, W.: A new class of convex bodies. Contemp. Math. 9, 333–340 (1982)

    MATH  MathSciNet  Google Scholar 

  • Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  • Schlather, M., Tawn, J.A.: Inequalities for the extremal coefficients of multivariate extreme value distributions. Extremes 5, 87–102 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Schlather, M., Tawn, J.A.: A dependence measure for multivariate and spatial extreme values: properties and inference. Biometrika 90, 139–156 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • Schneider, R.: Convex Bodies. The Brunn–Minkowski Theory. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  • Takahashi, R.: Asymptotic independence and perfect dependence of vector components of multivariate extreme statistics. Stat. Probab. Lett. 19, 19–26 (1994)

    Article  MATH  Google Scholar 

  • Tawn, J.A.: Bivariate extreme value theory: models and estimation. Biometrika 75, 397–415 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  • Thompson, A.C.: Minkowski Geometry. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  • Vitale, R.A.: The Wills functional and Gaussian processes. Ann. Probab. 24, 2172–2178 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilya Molchanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molchanov, I. Convex geometry of max-stable distributions. Extremes 11, 235–259 (2008). https://doi.org/10.1007/s10687-008-0055-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10687-008-0055-5

Keywords

AMS 2000 Subject Classifications

Navigation