Skip to main content
Log in

Hepatoprotective action of celery (Apium graveolens) leaves in acetaminophen-fed freshwater fish (Pangasius sutchi)

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Acetaminophen (APAP)-induced liver damage is one of the most common problems among the population. Therefore, the study was aimed to investigate the hepatoprotective effect of celery leaves on APAP-induced toxicity in a freshwater fish, Pangasius sutchi. Fish were divided into four experimental groups of 6 fish each. Group 1 served as control. Group 2 fish were exposed to APAP (500 mg/kg) for 24 h. Groups 3 and 4 fish were exposed to APAP + celery leaf powder (CE) (500 mg/kg) and CE for 24 h, respectively. The severity of liver damage, hepatic lipid, glycogen, ions status and histological alterations was examined. The characterization of CE extract was also performed. APAP-exposed fish showed elevated levels of both circulating and tissue hepatotoxic markers (AST, ALT and ALP), reduced hepatic glycogen and lipid contents (TG and cholesterol), increased tissue lipid peroxidation markers (TBARS, LHP and PCO), altered tissue levels of enzymatic (SOD, CAT, GPx and GST) and non-enzymatic (GSH) antioxidants and cellular thiol levels (T-SH, P-SH and NP-SH), and reduced hepatic ions (Na+, K+ and Ca2+) and abnormal liver histology. The abnormalities associated with APAP exposure were reversed on treatment with CE. The TLC separation and HPLC quantification of petroleum ether/acetone extract of CE showed the peaks for highly efficient flavonoids such as rutein, quercetin and luteolin. The observed hepatoprotective effect of CE might be due to its rich flavonoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdul Hamid Z, Budin SB, Wen Jie N, Hamid A, Husain K, Mohamed J (2012) Nephroprotective effects of Zingiber zerumbet Smith ethyl acetate extract against paracetamol-induced nephrotoxicity and oxidative stress in rats. J Zhejiang Univ-Sci B 13:176–185

    Article  PubMed  Google Scholar 

  • AC AO (1980) Official methods of analysis, 13th edn. Association of Official Analytic Chemists, Washington DC, pp 376–384

    Google Scholar 

  • Agarwal R, Macmillan-Crow LA, Rafferty TM, Saba H, Roberts DW, Fifer EK (2011) Acetaminophen-induced hepatotoxicity in mice occurs with inhibition of activity and nitration of mitochondrial manganese superoxide dismutase. J Pharmacol Exp Ther 337:110–116

    Article  PubMed  CAS  Google Scholar 

  • Alderman CJ, Shah S, Foreman JC, Chain BM, Katz DR (2002) The role of advanced oxidation protein products in regulation of dendritic cell function. Free Radic Biol Med 32:377–385

    Article  PubMed  CAS  Google Scholar 

  • Al-Turk WA, Stohs SJ (1981) Hepatic glutathione content and aryl hydrocarbon hydroxylase activity of acetaminophen-treated mice as a function of age. Drug Chem Toxicol 4:37–48

    Article  PubMed  CAS  Google Scholar 

  • Bironaite D, Ollinger K (1997) The hepatotoxicity of rhein involves impairment of mitochondrial functions. Chem Biol Interact 103:35–50

    Article  PubMed  CAS  Google Scholar 

  • Blair JB, Hinton DE, Miller MR (1990) Morphological changes in trout hepatocytes exposed to acetaminophen. Mar Environ Res 28:1–4

    Google Scholar 

  • Buccolo G (1973) Quantitative determination of serum triglycerides by use of enzymes. Clin Chem 19:476–482

    Google Scholar 

  • Chattopadhyay RR (2003) Possible mechanism of hepatoprotective activity of Azadirachta indica leaf extract: part II. J Ethnopharmacol 89:217–219

    Article  PubMed  CAS  Google Scholar 

  • Chevion M, Berenshtein E, Stadtman ER (2000) Human studies related to protein oxidation: protein carbonyl content as a marker of damage. Free Radic Res 33:S99–S108

    PubMed  CAS  Google Scholar 

  • Davidson DG, Eastham WN (1966) Acute liver necrosis following overdose of paracetamol. Br Med J 5512:497–499

    Article  Google Scholar 

  • De la Torre FR, Salibia’n A, Ferrari L (2007) Assessment of the pollution impact on biomarkers of effect of a freshwater fish. Chemosphere 68:1582–1590

    Article  Google Scholar 

  • Gharaei A, Ghaffari M, Keyvanshokooh S, Akrami R (2011) Changes in metabolic enzymes, cortisol and glucose concentrations of Beluga (Huso huso) exposed to dietary methyl mercury. Fish Physiol Biochem 37:485–493

    Article  PubMed  CAS  Google Scholar 

  • Goldfrank LR, Flomenbaum N (2006) Goldfrank’s toxicologic emergencies, 8th edn. McGraw Hill Professional, New York, pp 1623–1628

    Google Scholar 

  • Hart SG, Beierschmitt WP, Wyand DS, Khairallah EA, Cohen SD (1994) Acetaminophen nephrotoxicity in CD-1 mice. I. Evidence of a role for in situ activation in selective covalent binding and toxicity. Toxicol Appl Pharmacol 23:23–54

    Google Scholar 

  • Hazarika A, Sarkar SN (2001) Effect of isoproturon pretreatment on the biochemical toxicodynamics of anilofos in male rats. Toxicol 165:87–95

    Article  CAS  Google Scholar 

  • Hinson JA, Pike SL, Pumford NR, Mayeux PR (1998) Nitrotyrosine-protein adducts in hepatic centrilobular areas following toxic doses of acetaminophen in mice. Chem Res Toxicol 11:604–607

    Article  PubMed  CAS  Google Scholar 

  • Hinton DE, Segner H, Braunbeck T (2001) Toxic responses of the liver. In: Schlenk D, Benson WH (eds) Target organ toxicity in marine and freshwater teleosts. Taylor & Francis, London, pp 224–268

    Google Scholar 

  • Hoffmann KJ, Streeter AJ, Axworthy DB, Baillie TA (1985) Identification of the major covalent adduct formed in vitro and in vivo between acetaminophen and mouse liver proteins. Mol Pharmacol 27:566–573

    PubMed  CAS  Google Scholar 

  • Jaeschke H, Bajt ML (2006) Intracellular signaling mechanisms of acetaminophen-induced liver cell death. Toxicol Sci 89:31–41

    Article  PubMed  CAS  Google Scholar 

  • Kavitha P, Ramesh R, Bupesh G, Stalin A, Subramanian P (2011) Hepatoprotective activity of Tribulus terrestris extract against acetaminophen-induced toxicity in a freshwater fish (Oreochromis mossambicus). In Vitro Cell Dev Biol—Animal 47:698–706

    Article  CAS  Google Scholar 

  • Kirschner LB (2004) The mechanisms of sodium chloride uptake in hyper regulating aquatic animals. J Exper Biol 2004:1439–1452

    Article  Google Scholar 

  • Knight TR, Fariss MW, Farhood A, Jaeschke H (2003) Role of lipid peroxidation as a mechanism of liver injury after acetaminophen overdose in mice. Toxicol Sci 76:229–236

    Article  PubMed  CAS  Google Scholar 

  • Lauterburg BH, Smith CV, Hughes H, Mitchell JR (1984) Biliary excretion of glutathione and glutathione disulfide in the rat. Regulation and response to oxidative stress. J Clin Invest 73:124–133

    Article  PubMed  CAS  Google Scholar 

  • Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Shallttiel S, Stadtman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Meth Enzymol 186:464–478

    Article  PubMed  CAS  Google Scholar 

  • Lores Arnaiz S, Llesuy S, Cutrin JC, Boveris A (1995) Oxidative stress by acute acetaminophen administration in mouse liver. Free Radic Biol Med 19:303–310

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Masola B, Chibi M, Kandare E, Naik YS, Zaranyika MF (2008) Potential marker enzymes and metal–metal interactions in Helisoma duryi and Lymnaea natalensis exposed to cadmium. Ecotoxicol Environ Saf 70:79–87

    Article  PubMed  CAS  Google Scholar 

  • Mate’s JM, Sa’nchez-Jime’nez F (1999) Antioxidant enzymes and their implications in pathology process. Front Biosci 4:339–345

    Article  Google Scholar 

  • Mimica-Dukić N, Popović M (2007) Apiaceae Species. A promising sources of pharmacologically active compounds: Petrosellinum crispum, Apium greveolens and Pastinaca sativa. Rec Prog Med Plant Spec 21:132–133

    Google Scholar 

  • Morales MA, Jobbagy AJ, Terenzi HF (1973) Mutations affecting accumulation of glycogen. Neurospora News Lett 20:24–25

    Google Scholar 

  • Mudge GH, Gemborys MW, Duggin GG (1978) Covalent binding of metabolites of acetaminophen to kidney protein and depletion of renal glutathione. J Pharmaco Exp Ther 206:218–226

    CAS  Google Scholar 

  • Natio HK (1984) Cholesterol. In: Kaplan A et al (eds) Clinical Chemistry. The C.V.Mosby Co. St Louis, Toronoto, Princeton, pp 1194–11206, 437

  • Negre-Salvayre A, Auge N, Ayala V, Basaga H, Boada J, Brenke R (2010) Pathological aspects of lipid peroxidation. Free Radic Res 44:1125–1171

    Article  PubMed  CAS  Google Scholar 

  • Ostapowicz G, Fontana RJ, Schiodt FV, Larson A et al (2002) Results of a prospective study of acute liver failure at 17 tertiary care centers in the United States. Ann Intern Med 137:947–954

    Article  PubMed  Google Scholar 

  • Qiu Y, Benet LZ, Burlingame AL (1998) Identification of the hepatic protein targets of reactive metabolites of acetaminophen in vivo in mice using two-dimensional gel electrophoresis and mass spectrometry. J Biol Chem 273:17940–17953

    Article  PubMed  CAS  Google Scholar 

  • Radi R, Peluffo G, Alvarez MN, Naviliat M, Cayota A (2001) Unraveling peroxynitrite formation in biological systems. Free Radic Biol Med 30:463–488

    Article  PubMed  CAS  Google Scholar 

  • Rajasekar P, Anuradha CV (2006) Fructose-induced hepatic gluconeogenesis: effect of L-carnitine. Life Sci 80:1176–1183

    Article  PubMed  Google Scholar 

  • Ross JA, Kasum CM (2002) Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu Rev Nutr 22:19–34

    Article  PubMed  CAS  Google Scholar 

  • Ruepp SU, Tonge RP, Shaw J, Wallis N, Pognan F (2002) Genomics and proteomics analysis of acetaminophen toxicity in mouse liver. Toxicol Sci 65:135–150

    Article  PubMed  CAS  Google Scholar 

  • Sancho E, Ferna’ndez-Vega C, Ferrando MD, Andreu-Molinar E (2003) Eel ATPase activity as biomarker of thiobencarb exposure. Ecotoxicol Environ Saf 56:434–441

    Article  PubMed  CAS  Google Scholar 

  • Sedlak J, Lindsay RH (1968) Estimation of total, protein-bound and nonprotein sulfhydryl groups in tissue with Ellmans reagent. Anal Biochem 25:192–205

    Article  PubMed  CAS  Google Scholar 

  • Simic MG, Jovanovic SV (1990) Mechanisms of inactivation of oxygen radicals by dietary antioxidants and their models. Basic Life Sci 52:127–137

    PubMed  CAS  Google Scholar 

  • Sugihara N, Arakawa T, Ohnishi M, Furuno K (1999) Anti and pro-oxidative effects of flavonoids on metal-induced lipid hydroperoxide-dependent lipid peroxidation in cultured hepatocytes loaded with alpha-linolenic acid. Free Radic Biol Med 27:1313–1323

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Oberley LW, Li Y (1988) A simple method for clinical assay of superoxide dismutase. Clin Chem 34:497–500

    PubMed  CAS  Google Scholar 

  • Thomas P, Wofford HW (1984) Effects of metals and organic compounds on hepatic glutathione, cysteine, and acid-soluble thiol levels in mullet (Mugil cephalus L.). Toxicol Appl Pharmacol 76:172–182

    Article  PubMed  CAS  Google Scholar 

  • Vutukuru SS, Chintada S, Radha MKR, Venkateswara J, Anjaneyulu Y (2006) Acute effects of copper on superoxide dismutase, catalase and lipid peroxidation in the freshwater teleost fish, Esomus danricus. Fish Physiol Biochem 32:221–229

    Article  CAS  Google Scholar 

  • Wada L, Ou B (2002) Antioxidant activity and phenolic content of Oregon cranberries. J Agric Food Chem 50:3495–3500

    Article  PubMed  CAS  Google Scholar 

  • Wegner T, Fintelmann V (1999) Flavonoids and bioactivity. Wein Med Wochem Sihr 149:241–247

    Google Scholar 

  • Wendel A, Jaeschke H, Gloger M (1982) Drug-induced lipid peroxidation in mice—II. Protection against paracetamol-induced liver necrosis by intravenous liposomally entrapped glutathione. Biochem Pharmacol 33:3601–3605

    Article  Google Scholar 

  • Wolf JC, Wolfe MJ (2005) A brief overview of nonneoplastic hepatic toxicity in fish. Toxicol Pathol 33:75–85

    Article  PubMed  CAS  Google Scholar 

  • Xu QJ, Chen WM, Gao G (2008) Seasonal variations in microcystin concentrations in Lake Taihu, China. Environ Monit Assess 145:75–79

    Article  PubMed  CAS  Google Scholar 

  • Yan HM, Ramachandran A, Bajt ML, Lemasters JJ, Jaeschke H (2010) The oxygen tension modulates acetaminophen induced mitochondrial oxidant stress and cell injury in cultured hepatocytes. Toxicol Sci 117:515–523

    Article  PubMed  CAS  Google Scholar 

  • Yuxia C, Richard SP (2010) Use of transcriptomics in understanding mechanisms of drug-induced toxicity. Pharmacogenomics 11:573–585

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Karal Marx, Professor and Head, Fisheries Biotechnology Centre, Fisheries College and Research Institute, Thoothukudi, Tamil Nadu, India, for his guidance. They also wish to thank Miss. Duk-Hwa Kwon and Mr. Yoon Seok Nam, Chonnam National University Medical School, Gwangju, Republic of Korea for their timely help and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Rajasekar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shivashri, C., Rajarajeshwari, T. & Rajasekar, P. Hepatoprotective action of celery (Apium graveolens) leaves in acetaminophen-fed freshwater fish (Pangasius sutchi). Fish Physiol Biochem 39, 1057–1069 (2013). https://doi.org/10.1007/s10695-012-9762-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-012-9762-6

Keywords

Navigation