Skip to main content
Log in

Accumulation and biochemical effects of microcystin-LR on the Patagonian pejerrey (Odontesthes hatcheri) fed with the toxic cyanobacteria Microcystis aeruginosa

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

We studied accumulation and biochemical effects of microcystin-LR (MCLR) in Odontesthes hatcheri after dietary administration of the cyanobacteria Microcystis aeruginosa (1.3 μg MCLR/g body mass, incorporated in standard fish food). After 12 h, MCLR content in liver did not differ between fish fed with crushed or intact cells, demonstrating O. hatcheri’s capacity to digest cyanobacteria and absorb MCLR. In the second experiment, fish received toxic cells, non-toxic cells, or control food; MCLR accumulation was monitored for 48 h. Protein phosphatase 1 (PP1), catalase (CAT), glutathione-S-transferase (GST) activities, and lipid peroxidation (as MDA) were measured in liver and intestine. Methanol-extractable MCLR was determined by PP1 inhibition assay (PPIA); extractable and protein-bound MCLR were measured by Lemieux oxidation-gas chromatography/mass spectrometry (GC/MS). MCLR accumulated rapidly up to 22.9 and 9.4 μg MCLR/g in intestine and liver, respectively, followed by a decreasing tendency. Protein-bound MCLR represented 66 to ca. 100 % of total MCLR in both tissues. PP1 activity remained unchanged in intestine but was increased in liver of MCLR treated fish.CAT and GST activities and MDA content were significantly increased by MCLR only in liver. We conclude that O. hatcheri is able to digest cyanobacteria, accumulating MCLR mostly bound to proteins. Our data suggest that this freshwater fish can be adversely affected by cyanobacterial blooms. However, the rapid decrease of the detectable MCLR in both tissues could imply that sublethal toxin accumulation is rapidly reversed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Meth Enzymol 105:121–126. doi:10.1016/S0076-6879(84)05016-3

    Article  PubMed  CAS  Google Scholar 

  • Amado LL, Monserrat JM (2010) Oxidative stress generation by microcystins in aquatic animals: why and how. Environ Int 36:226–235. doi:10.1016/j.envint.2009.10.010

    Article  PubMed  CAS  Google Scholar 

  • Amorim A, Vasconcelos V (1999) Dynamics of microcystins in the mussel Mytilus galloprovincialis. Toxicon 37(7):1041–1052. doi:10.1016/S0041-0101(98)00231-1

    Article  PubMed  CAS  Google Scholar 

  • Atencio L, Moreno I, Jos A, Pichardo S, Moyano R, Blanco A, Cameán AM (2008) Dose-dependent antioxidant responses and pathological changes in tenca (Tinca tinca) after acute oral exposure to Microcystis under laboratory conditions. Toxicon 52(1):1–12. doi:10.1016/j.toxicon.2008.05.009

    Article  PubMed  CAS  Google Scholar 

  • Azevedo SMFO, Evans WR, Carmichael WW, Namikoshi M (1994) First report of microcystins from a Brazilian isolate of the cyanobacterium Microcystis aeruginosa. J Appl Phycol 6:261–264. doi:10.1007/BF02181936

    Article  CAS  Google Scholar 

  • Bartram J, Carmichael WW, Chorus I, Jones G, Skulberg OM (1999) Introduction. In: Chorus I, Bartram J (eds) Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management, 1st edn. WHO, New York, pp 12–23

    Google Scholar 

  • Beuge JA, Aust SD (1978) Microsomal lipid peroxidation. Meth Enzymol 52:302–310

    Article  Google Scholar 

  • Bollen M (2001) Combinatorial control of protein phosphatase-1. Trends Biochem Sci 26(7):426–431

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  PubMed  CAS  Google Scholar 

  • Brena BM, Diaz L, Sienra D, Ferrari G, Ferraz N, Hellman U, Gonzalez-Sapienza G, Last JA (2006) ITREOH building of regional capacity to monitor recreational water: development of a non-commercial microcystin ELISA and its impact on public health policy. Int J Occup Environ Health 12(4):377–385

    PubMed  CAS  Google Scholar 

  • Bury NR, Newlands AD, Eddy FB, Codd GA (1998) In vivo and in vitro intestinal transport of 3H-microcystin-LR, a cyanobacterial toxin, in rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 42:139–148. doi:10.1016/S0166-445X(98)00041-1

    Article  CAS  Google Scholar 

  • Carmichael WW (1994) The toxins of cyanobacteria. Sci Am 270:78–86

    Article  PubMed  CAS  Google Scholar 

  • Carmichael WW, An J (1999) Using an enzyme linked immunosorbent assay (ELISA) and a protein phosphatase inhibition assay (PPIA) for the detection of microcystins and nodularins. Nat Toxins 7:377–385. doi:10.1002/1522-7189(199911/12)7:6<377:AID-NT80>3.0.CO;2-8

    Article  PubMed  CAS  Google Scholar 

  • Cazenave J, Wunderlin DA, Bistoni MA, Amé MV, Krause E, Pflugmacher S, Wiegand C (2005) Uptake, tissue distribution and accumulation of microcystin-RR in Corydoras paleatus, Jenynsia multidentata and Odontesthes bonariensis. Aquat Toxicol 75:178–190. doi:10.1016/j.aquatox.2005.08.002

    Article  PubMed  CAS  Google Scholar 

  • Cazenave J, Bistoni MA, Pesce SF, Wunderlin DA (2006) Differential detoxification and antioxidant response in diverse organs of Corydoras paleatus experimentally exposed to microcystin-RR. Aquat Toxicol 76:1–12. doi:10.1016/j.aquatox.2005.08.011

    Article  PubMed  CAS  Google Scholar 

  • Chorus I, Bartram J (1999) Toxic cyanobacteria: a guide to their public health consequences, monitoring and management. WHO, New York

    Book  Google Scholar 

  • Codd G, Bell S, Kaya K, Ward C, Beattie K, Metcalf J (1999) Cyanobacterial toxins, exposure routes and human health. Eur J Phycol 34(4):405–415. doi:10.1080/09670269910001736462

    Article  Google Scholar 

  • Dawson RM (1998) The toxicology of microcystins. Toxicon 36(7):953–962. doi:10.1016/S0041-0101(97)00102-5

    Article  PubMed  CAS  Google Scholar 

  • Dionisio Pires LM, Karlsson KM, Meriluoto JAO, Kardinaal E, Visser PM, Siewertsen K, Van Donk E, Ibelings BW (2004) Assimilation and depuration of microcystin-LR by the zebra mussel, Dreissena polymorpha. Aquat Toxicol 69:385–396. doi:10.1016/j.aquatox.2004.06.004

    Article  Google Scholar 

  • Ferrada M (2010) Incidencia de cianotoxinas en la cría del pejerrey patagónico (Odontesthes hatcheri, Eigenmann, 1909) en balsas-jaulas en el embalse Ezequiel Ramos Mexía, Neuquén. MSc thesis, National University of Comahue, Argentina

  • Ferraõ-Filho AS, Kozlowsky-Suzuki B, Azevedo SMFO (2002) Accumulation of microcystins by a tropical zooplankton community. Aquat Toxicol 59:201–208. doi:10.1016/S0166-445X(01)00253-3

    Article  Google Scholar 

  • Fischer WJ, Dietrich DR (2000) Pathological and biochemical characterization of microcystin-induced hepatopancreas and kidney damage in carp (Cyprinus carpio). Toxicol Appl Pharmacol 164:73–81. doi:10.1006/taap.1999.8861

    Article  PubMed  CAS  Google Scholar 

  • Gorham PR, McLachlan J, Hammer UT, Kim WK (1964) Isolation and culture of toxic strains of Anabaena flos-aquae. Bréb Ver Int Verein Theor Angew Limnol 15:796–804

    Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    PubMed  CAS  Google Scholar 

  • Honkanen RE, Zwiller J, Moore RE, Daily SL, Khatra BS, Dukelow M, Boynton AL (1990) Characterization of microcystin-LR, a potent inhibitor of type 1 and type 2A protein phosphatases. J Biol Chem 265:19401–19404

    PubMed  CAS  Google Scholar 

  • Hooser SB (2000) Fulminant hepatocyte apoptosis in vivo following microcystin-LR administration to rats. Toxicol Pathol 28:726–733. doi:10.1177/019262330002800513

    Article  PubMed  CAS  Google Scholar 

  • Hualde JP, Torres WDC, Moreno P, Ferrada M, Demicheli MA, Molinari LJ, Luquet CM (2011) Growth and feeding of patagonian pejerrey Odontesthes hatcheri reared in net cages. Aquac Res 42:754–763. doi:10.1111/j.1365-2109.2011.02827

    Article  CAS  Google Scholar 

  • Ito E, Takai A, Kondo F, Masui H, Imanishi S, Harada K (2002) Comparison of protein phosphatase inhibitory activity and apparent toxicity of microcystins and related compounds. Toxicon 40(7):1017–1025. doi:10.1016/S0041-0101(02)00099-5

    Article  PubMed  CAS  Google Scholar 

  • Jos A, Pichardo S, Prieto AI, Repetto G, Vázquez CM, Moreno I, Cameán AM (2005) Toxic cyanobacterial cells containing microcystins induce oxidative stress in exposed tilapia fish (Oreochromis sp.) under laboratory conditions. Aquat Toxicol 72:261–271. doi:10.1016/j.aquatox.2005.01.003

    Article  PubMed  CAS  Google Scholar 

  • Kondo F, Ikai Y, Oka H, Okumura M, Ishikawa N, Harada KI, Matsuura K, Murata H, Suzuki M (1992) Formation, characterization and toxicity of the glutathione and cystein conjugates of the toxic heptapeptide microcystins. Chem Res Toxicol 5:591–596. doi:10.1021/tx00029a002

    Article  PubMed  CAS  Google Scholar 

  • Kotak BG, Semalulu S, Fritz DL, Prepas EE, Hrudey SE, Coppock RW (1996) Hepatic and renal pathology of intraperitoneally administered microcystin-LR in rainbow trout (Oncorhynchus mykiss). Toxicon 34:517–525. doi:10.1016/0041-0101(96)00009-8

    Article  PubMed  CAS  Google Scholar 

  • Kuiper-Goodman T, Falconer I, Fitzgerald J (1999) Human health aspects. In: Chorus I, Bartram J (eds) Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management, 1st edn. WHO, New York, pp 12–23

    Google Scholar 

  • Lawton LA, Edwards C (2001) Purification of microcystins. J Chromatogr A 912:191–209. doi:10.1016/S0021-9673(01)00592-1

    Article  PubMed  CAS  Google Scholar 

  • Li X, Liu Y, Song L, Liu JSH (2003) Responses of antioxidant systems in the hepatocytes of common carp (Cyprinus carpio L.) to the toxicity of microcystin-LR. Toxicon 42:85–89. doi:10.1016/S0041-0101(03)00104-1

    Article  PubMed  CAS  Google Scholar 

  • Li XY, Chung IK, Kim JI, Lee JA (2005) Oral exposure to Microcystis increases activity-augmented antioxidant enzymes in the liver of loach (Misgurnus mizolepis) and has no effect on lipid peroxidation. Comp Biochem Physiol C: Toxicol Pharmacol 141(3):292–296. doi:10.1016/j.cca.2005.07.004

    Article  Google Scholar 

  • MacKintosh C, Beattie KA, Klumpp S, Cohen P, Codd GA (1990) Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Lett 264(2):187–192

    Article  PubMed  CAS  Google Scholar 

  • MacKintosh RW, Dalby KN, Campbell DG, Cohen PTW, Cohen P, MacKintosh C (1995) The cyanobacterial toxin microcystin binds covalently to cysteine-273 on protein phosphatase 1. FEBS Lett 371:236–240. doi:10.1016/0014-5793(95)00888-G

    Article  PubMed  CAS  Google Scholar 

  • Magalhães VF, Marinho MM, Domingos P, Oliveira AC, Costa SM, Azevedo LO, Azevedo SMFO (2003) Microcystins (cyanobacteria hepatotoxins) bioaccumulation in fish and crustaceans from Sepetiba Bay (Brasil, RJ). Toxicon 42:289–295. doi:10.1016/S0041-0101(03)00144-2

    Article  PubMed  Google Scholar 

  • Malbrouck C, Trausch G, Devos P, Kestemont P (2003) Hepatic accumulation and effects of microcystin-LR on juvenile goldfish Carassius auratus L. Comp Biochem Physiol C 135:39–48. doi:10.1016/S1532-0456(03)00047-4

    Article  Google Scholar 

  • Malbrouck C, Trausch G, Devos P, Kestemont P (2004) Effect of microcystin-LR on protein phosphatase activity and glycogen content in isolated hepatocytes of fed and fasted juvenile goldfish Carassius auratus L. Toxicon 44:927–932. doi:10.1016/j.toxicon.2004.09.003

    Article  PubMed  CAS  Google Scholar 

  • Molina R, Moreno I, Pichardo S, Jos A, Moyano R, Monterde JG, Cameán A (2005) Acid and alkaline phosphatase activities and pathological changes induced in Tilapia fish (Oreochromis sp.) exposed subchronically to microcystins from toxic cyanobacterial blooms under laboratory conditions. Toxicon 46:725–735. doi:10.1016/j.toxicon.2005.07.012

    Article  PubMed  CAS  Google Scholar 

  • Oliver CJ, Shenolikar S (1998) Physiologic importance of protein phosphatase inhibitors. Front Biosci 3:961–972

    Google Scholar 

  • Osswald J, Rellán S, Gago A, Vasconcelos V (2007) Toxicology and detection methods of the alkaloid neurotoxin produced by cyanobacteria, anatoxin-a. Environ Int 33:1070–1089. doi:10.1016/j.envint.2007.06.003

    Article  PubMed  CAS  Google Scholar 

  • Pflugmacher S, Wiegand C, Oberemm A, Beattie KA, Krause E, Codd GA (1998) Identification of an enzymatically formed glutathione conjugate of the cyanobacterial hepatoxin microcystin-LR: the first step of detoxication. Biochim Biophys Acta 1425:527–533. doi:10.1016/S0304-4165(98)00107-X

    Article  PubMed  CAS  Google Scholar 

  • Prieto AI, Jos A, Pichardo S, Moreno I, Cameán AM (2006) Differential oxidative stress responses to microcystins LR and RR in intraperitoneally exposed tilapia fish (Oreochromis sp.). Aquat Toxicol 77:314–321. doi:10.1016/j.aquatox.2005.12.012

    Article  PubMed  CAS  Google Scholar 

  • Puig A (1992) Estructura espacial y temporal de la taxocenosis de entomostracos (Crustacea) limnéticos en el embalse Ramos Mexía (provincia del Neuquén y de Río Negro, Argentina. PhD thesis, University of Buenos Aires, Argentina

  • Råbergh CMI, Bylund G, Eriksson JE (1991) Histopathological effect of microcystin LR a cyclic polypeptide from the cyanobacterium Microcystis aeruginosa on common carp (Cyprinus carpio L.). Aquat Toxicol 20:131–146. doi:10.1016/0166-445X(91)90012-X

    Article  Google Scholar 

  • Runnegar M, Seward DJ, Ballatori N, Crawford JM, Boyer JL (1999) Hepatic toxicity and persistence of ser/thr protein phosphatase inhibition by microcystin in the little skate Raja erinacea. Toxicol Appl Pharmacol 161:40–49

    Article  PubMed  CAS  Google Scholar 

  • Sahin A, Tencalla FG, Dietrich DR, Naegeli H (1996) Biliary excretion of biochemically active cyanobacteria (blue-green algae) hepatotoxins in fish. Toxicology 106:123–130. doi:10.1016/0300-483X(95)03173-D

    Article  PubMed  CAS  Google Scholar 

  • Sano T, Nohara K, Shiraishi F, Kaya K (1992) A method for micro-determination of total microcystin content in waterblooms of cyanobacteria (blue-green algae). Int J Environ Anal Chem 49:163–170

    Article  CAS  Google Scholar 

  • Smith JL, Haney JF (2006) Foodweb transfer, accumulation, and depuration of microcystins, a cyanobacterial toxin, in pumpkinseed sunfish (Lepomis gibbosus). Toxicon 48:580–589. doi:10.1016/j.toxicon.2006.07.009

    Article  PubMed  CAS  Google Scholar 

  • Soares RM, Magalhães VF, Azevedo SMFO (2004) Accumulation and depuration of microcystins (cyanobacteria hepatotoxins) in Tilapia rendalli (Cichlidae) under laboratory conditions. Aquat Toxicol 70:1–10. doi:10.1016/j.aquatox.2004.06.013

    Article  PubMed  CAS  Google Scholar 

  • Somoza GM, Miranda LA, Berasain GE, Colautti D, Remes Lenicov M, Strussmann CA (2008) Historical aspects, current status, and prospects of pejerrey aquaculture in South America. Aquac Res 39:784–793. doi:10.1111/j.1365-2109.2008.01930.x

    Article  Google Scholar 

  • Tencalla F, Dietrich D (1997) Biochemical characterization of microcystin toxicity in rainbow trout (Oncorhynchus mykiss). Toxicon 35(4):583–595. doi:10.1016/S0041-0101(96)00153-5

    Article  PubMed  CAS  Google Scholar 

  • Tencalla FG, Dietrich DR, Schlatter C (1994) Toxicity of Microcystis aeruginosa peptide toxin to yearling rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 30(3):215–224. doi:10.1016/0166-445X(94)90059-0

    Article  CAS  Google Scholar 

  • Therien AG, Blostein R (2000) Mechanisms of sodium pump regulation. Am J Physiol Cell Physiol 279:541–566

    Google Scholar 

  • Wang M, Chan LL, Si M, Hong H, Wang D (2010a) Proteomic analysis of hepatic tissue of Zebrafish (Danio rerio) experimentally exposed to chronic microcystin-LR. Toxicol Sci 113(1):60–69. doi:10.1093/toxsci/kfp248

    Article  PubMed  CAS  Google Scholar 

  • Wang M, Wang D, Lin L, Hong H (2010b) Protein profiles in zebrafish (Danio rerio) brains exposed to chronic microcystin-LR. Chemosphere 81:716–724. doi:10.1016/j.chemosphere.2010.07.061

    Article  PubMed  CAS  Google Scholar 

  • Wenzel MT, Díaz MM (2008) Cyanophyta del Parque Nacional Nahuel Huapi. (Argentina), II. Darwiniana 46(1):51–65

    Google Scholar 

  • Wiegand C, Pflugmacher S (2005) Ecotoxicological effects of selected cyanobacterial secondary metabolites a short review. Toxicol Appl Pharmacol 203:201–218. doi:10.1016/j.taap.2004.11.002

    Article  PubMed  CAS  Google Scholar 

  • Williams DE, Dawe SC, Kent ML, Andersen RJ, Craig M, Holmes CFB (1997a) Bioaccumulation and clearance of microcystins from salt water mussels, Mytilus edulis, and in vivo evidence for covalently bound microcystins in mussel tissues. Toxicon 35(11):1617–1625. doi:10.1016/S0041-0101(97)00039-1

    Article  PubMed  CAS  Google Scholar 

  • Williams DE, Craig M, Dawe SC, Kent ML, Holmes CFB, Andersen RJ (1997b) Evidence for a covalently bound form of microcystin-LR in salmon liver and dungeness crab larvae. Chem Res Toxicol 10:463–469. doi:10.1021/tx9601519

    Article  PubMed  CAS  Google Scholar 

  • Xie L, Xie P, Ozawa K, Honma T, Yokoyama A, Park HD (2004) Dynamics of microcystins-LR and -RR in the phytoplanktivorous silver carp in a sub-chronic toxicity experiment. Environ Pollut 127:431–439. doi:10.1016/j.envpol.2003.08.011

    Article  PubMed  CAS  Google Scholar 

  • Xie L, Xie P, Guo L, Li L, Miyabara Y, Park HD (2005) Organ distribution and bioaccumulation of microcystins in freshwater fish at different trophic levels from the eutrophic lake Chaohu, China. Environ Toxicol 20:293–300. doi:10.1002/tox.20120

    Article  PubMed  CAS  Google Scholar 

  • Yuan M, Carmichael WW, Hilborn ED (2006) Microcystin analysis in human sera and liver from human fatalities in Caruaru, Brazil, 1996. Toxicon 48(6):627–640. doi:10.1016/j.toxicon.2006.07.031

    Article  PubMed  CAS  Google Scholar 

  • Zar HJ (1999) Biostatistical analysis, 4th edn. Prentice Hall, New Jersey

    Google Scholar 

Download references

Acknowledgments

We would like to thank to the CEAN staff, especially to Walter Torres, Pablo Hualde and Mariela Demicheli for their kind help with fish and aquaria. We are grateful to Drs. Wayne Carmichael, Sandra Azevedo, and Beatriz Brena for generously providing microcystin-LR standard for previous technique calibration and helping with toxin determinations. We acknowledge helpful comments from Andrés Venturino and Fabiana Lo Nostro, and from an anonymous reviewer. This work was supported by grants: CONICET PIP 0282 and ANPCYT-PICT 00214 to CML. FB and VAB are doctoral students supported by CONICET. CML is a researcher at CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flavia Bieczynski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bieczynski, F., Bianchi, V.A. & Luquet, C.M. Accumulation and biochemical effects of microcystin-LR on the Patagonian pejerrey (Odontesthes hatcheri) fed with the toxic cyanobacteria Microcystis aeruginosa . Fish Physiol Biochem 39, 1309–1321 (2013). https://doi.org/10.1007/s10695-013-9785-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-013-9785-7

Keywords

Navigation