Skip to main content
Log in

Expression of mep50 in adult and embryos of medaka fish (Oryzias latipes)

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Protein arginine methylation is important for gene regulation and biological processes. Methylosome protein 50 (Mep50) is identified as a partner of protein arginine methyltransferase 5 (Prmt5), a major enzyme capable of symmetric dimethylation, in mammals and Xenopus. The isolation and characterization of medaka mep50 were reported in this paper. Medaka Mep50 is a homolog of human MEP50 with six WD40 domains. Medaka mep50 was ubiquitously expressed in the adult tissues and had maternal origin with continuous and dynamical expression during embryonic development detected by RT-PCR and in situ hybridization. A strong interaction of medaka Mep50 and Prmt5 was shown by yeast two hybridization. The expression pattern of mep50 is similar to that of prmt5 in medaka. The results suggested that medaka Mep50 could be a partner of Prmt5 and might play major roles in a variety of tissues in medaka.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AA:

Amino acids

BCIP:

5-Bromo-4-chloro-3-indolyl phosphate

bp:

Base pairs

DIG:

Digoxigenin

FCP:

TFIIF-associating carboxyl-terminal domain phosphatase

hpf:

Hours post-fertilization

Mep50:

Methylosome protein 50

NBT:

Nitroblue tetrazolium

ORF:

Open reading frame

PBS:

Phosphate-buffered saline

PCR:

Polymerase chain reaction

PGC:

Primordial germ cell

Prmt:

Protein arginine methyltransferase

RT-PCR:

Reverse transcription polymerase chain reaction

snRNP:

Small nuclear ribonucleic protein

SSC:

A buffer containing sodium citrate and sodium chloride

WD40:

A domain with approximately 40 AAs and usually ending with a tryptophan (W) and aspartic acid (D)

References

  • Aggarwal P, Vaites LP, Kim JK, Mellert H, Gurung B, Nakagawa H, Herlyn M, Hua X, Rustgi AK, McMahon SB, Diehl JA (2010) Nuclear cyclin D1/CDK4 kinase regulates CUL4 expression and triggers neoplastic growth via activation of the PRMT5 methyltransferase. Cancer Cell 18:329–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amente S, Napolitano G, Licciardo P, Monti M, Pucci P, Lania L, Majello B (2005) Identification of proteins interacting with the RNAPII FCP1 phosphatase: FCP1 forms a complex with arginine methyltransferase PRMT5 and it is a substrate for PRMT5-mediated methylation. FEBS Lett 579:683–689

    Article  CAS  PubMed  Google Scholar 

  • Ancelin K, Lange UC, Hajkova P, Schneider R, Bannister AJ, Kouzarides T, Surani MA (2006) Blimp1 associates with Prmt5 and directs histone arginine methylation in mouse germ cells. Nat Cell Biol 8:623–630

    Article  CAS  PubMed  Google Scholar 

  • Anne J, Mechler BM (2005) Valois, a component of the nuage and pole plasm, is involved in assembly of these structures, and binds to Tudor and the methyltransferase Capsuléen. Development 132:2167–2177

    Article  CAS  PubMed  Google Scholar 

  • Anne J, Ollo R, Ephrussi A, Mechler BM (2007) Arginine methyltransferase Capsuleen is essential for methylation of spliceosomal Sm proteins and germ cell formation in Drosophila. Development 134:137–146

    Article  CAS  PubMed  Google Scholar 

  • Antonysamy S, Bonday Z, Campbell RM, Doyle B, Druzina Z, Gheyi T, Han B, Jungheim LN, Qian Y, Rauch C, Russell M, Sauder JM, Wasserman SR, Weichert K, Willard FS, Zhang A, Emtage S (2012) Crystal structure of the human PRMT5:MEP50 complex. Proc Natl Acad Sci USA 109:17960–17965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bedford MT, Clarke SG (2009) Protein arginine methylation in mammals: Who, what, and why. Mol Cell 33:1–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boisvert FM, Cote J, Boulanger MC, Cleroux P, Bachand F, Autexier C, Richard S (2002) Symmetrical dimethylarginine methylation is required for the localization of SMN in Cajal bodies and pre-mRNA splicing. J Cell Biol 159:957–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavey M, Hijal S, Zhang X, Suter B (2005) Drosophila valois encodes a divergent WD protein that is required for Vasa localization and Oskar protein accumulation. Development 132:459–468

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Cao M, Yang Y, Nagahama Y, Zhao H (2009) Expression pattern of prmt5 in adult fish and embryos of medaka, Oryzias latipes. Fish Physiol Biochem 35:325–332

    Article  CAS  PubMed  Google Scholar 

  • Chung J, Karkhanis V, Tae S, Yan F, Smith P, Ayers LW, Agostinelli C, Pileri S, Denis GV, Baiocchi RA, Sif S (2013) Protein arginine methyltransferase 5 (PRMT5) inhibition induces lymphoma cell death through reactivation of the retinoblastoma tumor suppressor pathway and polycomb repressor complex 2 (PRC2) silencing. J Biol Chem 288:35534–35547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dacwag CS, Ohkawa Y, Pal S, Sif S, Imbalzano AN (2007) The protein arginine methyltransferase Prmt5 is required for myogenesis because it facilitates ATP-dependent chromatin remodeling. Mol Cell Biol 27:384–394

    Article  CAS  PubMed  Google Scholar 

  • Friesen WJ, Wyce A, Paushkin S, Abel L, Rappsilber J, Mann M, Dreyfuss G (2002) A novel WD repeat protein component of the methylosome binds Sm proteins. J Biol Chem 277:8243–8247

    Article  CAS  PubMed  Google Scholar 

  • Furuno K, Masatsugu T, Sonoda M, Sasazuki T, Yamamoto K (2006) Association of Polycomb group SUZ12 with WD-repeat protein MEP50 that binds to histone H2A selectively in vitro. Biochem Biophys Res Commun 345:1051–1058

    Article  CAS  PubMed  Google Scholar 

  • Gonsalvez GB, Rajendra TK, Tian L, Matera AG (2006) The Sm-protein methyltransferase, dart5, is essential for germ-cell specification and maintenance. Curr Biol 16:1077–1089

    Article  CAS  PubMed  Google Scholar 

  • Guderian G, Peter C, Wiesner J, Sickmann A, Schulze-Osthoff K, Fischer U, Grimmler M (2011) RioK1, a new interactor of protein arginine methyltransferase 5 (PRMT5), competes with pICln for binding and modulates PRMT5 complex composition and substrate specificity. J Biol Chem 286:1976–1986

    Article  CAS  PubMed  Google Scholar 

  • Ho MC, Wilczek C, Bonanno JB, Xing L, Seznec J, Matsui T, Carter LG, Onikubo T, Kumar PR, Chan MK, Brenowitz M, Cheng RH, Reimer U, Almo SC, Shechter D (2013) Structure of the arginine methyltransferase PRMT5-MEP50 reveals a mechanism for substrate specificity. PLoS One 8(2):e57008. doi:10.1371/journal.pone.0057008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosohata K, Li P, Hosohata Y, Qin J, Roeder RG, Wang Z (2003) Purification and identification of a novel complex which is involved in androgen receptor-dependent transcription. Mol Cell Biol 23:7019–7029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jansson M, Durant ST, Cho EC, Sheahan S, Edelmann M, Kessler B, La Thangue NB (2008) Arginine methylation regulates the p53 response. Nat Cell Biol 10:1431–1439

    Article  CAS  PubMed  Google Scholar 

  • Kirino Y, Kim N, de Planell-Saguer M, Khandros E, Chiorean S, Klein PS, Rigoutsos I, Jongens TA, Mourelatos Z (2009) Arginine methylation of Piwi proteins catalysed by dPRMT5 is required for Ago3 and Aub stability. Nat Cell Biol 11:652–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Licciardo P, Amente S, Ruggiero L, Monti M, Pucci P, Lania L, Majello B (2003) The FCP1 phosphatase interacts with RNA polymerase II and with MEP50 a component of the methylosome complex involved in the assembly of snRNP. Nucleic Acids Res 31:999–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ligr M, Patwa RR, Daniels G, Pan L, Wu X, Li Y, Tian L, Wang Z, Xu R, Wu J, Chen F, Liu J, Wei JJ, Lee P (2011) Expression and function of androgen receptor coactivator p44/Mep50/WDR77 in ovarian cancer. PLoS One 6(10):e26250. doi:10.1371/journal.pone.0026250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mallappa C, Hu YJ, Shamulailatpam P, Tae S, Sif S, Imbalzano AN (2010) The expression of myogenic microRNAs indirectly requires protein arginine methyltransferase (Prmt) 5 but directly requires Prmt4. Nucleic Acids Res 39:1243–1255

    Article  PubMed  PubMed Central  Google Scholar 

  • Meister G, Eggert C, Buhler D, Brahms H, Kambach C, Fischer U (2001) Methylation of Sm proteins by a complex containing PRMT5 and the putative U snRNP assembly factor pICln. Curr Biol 11:1990–1994

    Article  CAS  PubMed  Google Scholar 

  • Nagamatsu G, Kosaka T, Kawasumi M, Kinoshita T, Takubo K, Akiyama H, Sudo T, Kobayashi T, Oya M, Suda T (2011) A germ cell-specific gene, Prmt5, works in somatic cell reprogramming. J Biol Chem 286:10641–10648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neuenkirchen N, Chari A, Fischer U (2008) Deciphering the assembly pathway of Sm-class U snRNPs. FEBS Lett 582:1997–2003

    Article  CAS  PubMed  Google Scholar 

  • Nicholas C, Yang J, Peters SB, Bill MA, Baiocchi RA, Yan F, Sïf S, Tae S, Gaudio E, Wu X, Grever MR, Young GS, Lesinski GB (2013) PRMT5 is upregulated in malignant and metastatic melanoma and regulates expression of MITF and p27(Kip1). PLoS One 8(9):e74710. doi:10.1371/journal.pone.0074710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Page RDM (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    CAS  PubMed  Google Scholar 

  • Pal S, Yun R, Datta A, Lacomis L, Erdjument-Bromage H, Kumar J, Tempst P, Sif S (2003) mSin3A/histone deacetylase 2- and PRMT5-containing Brg1 complex is involved in transcriptional repression of the Myc target gene cad. Mol Cell Biol 23:7475–7487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng Y, Li Y, Gellert LL, Zou X, Wang J, Singh B, Xu R, Chiriboga L, Daniels G, Pan R, Zhang DY, Garabedian MJ, Schneider RJ, Wang Z, Lee P (2010) Androgen receptor coactivator p44/Mep50 in breast cancer growth and invasion. J Cell Mol Med 14:2780–2789

    Article  CAS  PubMed  Google Scholar 

  • Richard S, Morel M, Cléroux P (2005) Arginine methylation regulates IL-2 gene expression: a role for protein arginine methyltransferase 5 (PRMT5). Biochem J 388(Pt 1):379–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scoumanne A, Zhang J, Chen X (2009) PRMT5 is required for cell-cycle progression and p53 tumor suppressor function. Nucleic Acids Res 37:4965–4976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith TF, Gaitatzes C, Saxena K, Neer EJ (1999) The WD repeat: a common architecture for diverse functions. Trends Biochem Sci 24:181–185

    Article  CAS  PubMed  Google Scholar 

  • Tee WW, Pardo M, Theunissen TW, Yu L, Choudhary JS, Hajkova P, Surani MA (2010) Prmt5 is essential for early mouse development and acts in the cytoplasm to maintain ES cell pluripotency. Gene Dev 24:2772–2777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang M, Sun J, Sun X, Shen Q, Gao Z, Yang C (2009) Caenorhabditis elegans protein arginine methyltransferase PRMT-5 negatively regulates DNA damage-induced apoptosis. PLoS Genet 5(6):e1000514. doi:10.1371/journal.pgen.1000514

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao Q, Rank G, Tan YT, Li H, Moritz RL, Simpson RJ, Cerruti L, Curtis DJ, Patel DJ, Allis CD, Cunningham JM, Jane SM (2009) PRMT5-mediated methylation of histone H4R3 recruits DNMT3A, coupling histone and DNA methylation in gene silencing. Nat Struct Mol Biol 16:304–311

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Guan G, Duan J, Cheng N, Wang J, Matsuda M, Paul-Prasanth B, Nagahama Y (2013) Ol4E-T, a eukaryotic translation initiation factor 4E-binding protein of Medaka fish (Oryzias latipes), can interact with Nanos3 and Vasa in vitro. J Exp Zool B Mol Dev Evol 320:10–21

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (Grant No. 31272645).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haobin Zhao.

Additional information

Nana Cheng and Maomao Guo have contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, N., Guo, M., Chang, P. et al. Expression of mep50 in adult and embryos of medaka fish (Oryzias latipes). Fish Physiol Biochem 42, 1053–1061 (2016). https://doi.org/10.1007/s10695-016-0196-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-016-0196-4

Keywords

Navigation