Skip to main content
Log in

Fat deposition pattern and mechanism in response to dietary lipid levels in grass carp, Ctenopharyngodon idellus

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

This study aimed to evaluate the fat deposition pattern and lipid metabolic strategies of grass carp in response to dietary lipid levels. Five isonitrogenous diets (260 g kg−1 crude protein) containing five dietary lipid levels (0, 20, 40, 60, 80 g kg−1) were fed to quadruplicate groups of 15 fish with initial weight 200 g, for 8 weeks. The best growth performance and feed utilization was observed in fish fed with lipid level at 40 g kg−1. MFI and adipose tissue lipid content increased with increasing dietary lipid level up to 40 g kg−1, and higher lipid level in diet made no sense. Fish adapted to high lipid intake through integrated regulating mechanisms in several related tissues to maintain lipid homeostasis. In the present study, grass carp firstly increased PPARγ and CPT1 expressions in adipose tissue to elevate adipocyte differentiation and lipolysis to adapt to high lipid intake above 40 g kg−1. In liver, fish elevated hepatic lipid uptake but depressed biosynthesis of hepatic FAs, resulted in no difference in HSI and liver lipid content among the groups. Only in muscle, fish showed a significant fat deposition when the lipid intake above 40 g kg−1. The excess lipid, derived from enhanced serum TC and TG contents, was more likely to induce deposition in muscle rather than lipid uptake by adipose tissue in grass carp fed with high dietary lipid, indicating the muscle of grass carp might be the main responding organ to high lipid intake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

B2M:

Beta-2-microglobulin

β-actin:

Actin isoform B

CPT1:

Carnitine palmitoyltransferase 1

FAS:

Fatty acid synthetase

FE:

Feed efficiency

FI:

Feed intake

HDL:

High-density lipoprotein

HMBS:

Hydroxymethyl-bilane synthase

HSI:

Hepatopancreasomatic index

LDL:

Low-density lipoprotein

LPL:

Lipoprotein lipase

MFI:

Mesenteric fat index

PE:

Protein efficiency

PPARα:

Peroxisome proliferator-activated receptor type α

PPARγ:

Peroxisome proliferator-activated receptor type γ

RPL13A:

Ribosomal protein L13a

SDHA:

Succinate dehydrogenase complex, subunit A

SGR:

Specific growth ratio

SREBP1:

Sterol regulatory element binding protein 1

TC:

Total cholesterol

TG:

Total triglyceride

Tubα 1:

Tubulin alpha 1

VSI:

Viscerosomatic index

WG:

Weight gain

References

  • Ackman RG (1995) Composition and nutritive value of fish and shellfish lipids. In: Ruiter A (ed) Fish and fishery products, composition, nutritive properties and stability. CAB International, Wallingford, pp 117–156

    Google Scholar 

  • Alves Martins D, Rocha F, Martínez-Rodríguez G, Bell G, Morais S, Castanheira F, Bandarra N, Coutinho J, Yúfera M, Conceição LEC (2012) Teleost fish larvae adapt to dietary arachidonic acid supply through modulation of the expression of lipid metabolism and stress response genes. Br J Nutr 108:864–874

    Article  CAS  PubMed  Google Scholar 

  • Arzel J, Lopez FXM, Métailler R, Stéphan G, Viau M, Gandemer G, Guillaume J (1994) Effect of dietary lipid on growth performance and body composition of brown trout (Salmo trutta) reared in seawater. Aquaculture 123:361–375

    Article  CAS  Google Scholar 

  • Beamish FWH, Medland TE (1986) Protein sparing effects in large rainbow trout, Salmo gairdneri. Aquaculture 55:35–42

    Article  Google Scholar 

  • Brun RP, Spiegelman BM (1997) PPAR gamma and the molecular control of adipogenesis. J Endocrinol 155:217–218

    Article  CAS  PubMed  Google Scholar 

  • Buettner R, Schölmerich J, Bollheimer LC (2007) High-fat diets: modeling the metabolic disorders of human obesity in rodents. Obesity 15:798–808

    Article  CAS  PubMed  Google Scholar 

  • Chatzifotis S, Panagiotidou M, Papaioannou N, Pavlidis M, Nengas I, Mylonas CC (2010) Effect of dietary lipid levels on growth, feed utilization, body composition and serum metabolites of meagre (Argyrosomus regius) juveniles. Aquaculture 307:65–70

    Article  CAS  Google Scholar 

  • Cho CY, Kaushik SJ (1990) Nutritional energetics in fish: energy and protein utilization in rainbow trout, Salmo gairdneri. World Rev Nutr Diet 61:162–172

    Google Scholar 

  • Clarke SD, Hembree J (1990) Inhibition of triiodothyronine’s induction of rat liver lipogenic enzymes by dietary fat. J Nutr 120:625–630

    CAS  PubMed  Google Scholar 

  • Das KM, Tripathi SD (1991) Studies on the digestive enzymes of grass carp, Ctenopharyngodon idella (Val.). Aquaculture 92:21–32

    Article  CAS  Google Scholar 

  • Den Boer M, Voshol PJ, Kuipers F, Havekes LM, Romijn JA (2004) Hepatic steatosis: a mediator of the metabolic syndrome. Lessons from animal models. Arterioscler Thromb Vas 24:644–649

    Article  Google Scholar 

  • Ding L, Zhang L, Wang J, Ma J, Meng X, Duan P, Sun L, Sun Y (2010) Effect of dietary lipid level on the growth performance, feed utilization, body composition and blood chemistry of juvenile starry flounder (Platichthys stellatus). Aquac Res 41:1470–1478

    CAS  Google Scholar 

  • Dong X, Xu H, Mai K, Xu W, Zhang YJ, Ai QH (2015) Cloning and characterization of SREBP-1 and PPAR-α in Japanese seabass Lateolabrax japonicus, and their gene expressions in response to different dietary fatty acid profiles. Comp Biochem Phys B 180:48–56

    Article  CAS  Google Scholar 

  • Du ZY, Clouet P, Zheng WH, Degrace P, Tian LX, Liu YJ (2006) Biochemical hepatic alterations and body lipid composition in the herbivorous grass carp (Ctenopharyngodon idella) fed high-fat diets. Br J Nutr 95:905–915

    Article  CAS  PubMed  Google Scholar 

  • Egea M, Metón I, Córdoba M, Fernández F, Baanante IV (2008) Role of Sp1 and SREBP-1a in the insulin-mediated regulation of glucokinase transcription in the liver of gilthead sea bream (Sparus aurata). Gen Comp Endocrinol 155:359–367

    Article  CAS  PubMed  Google Scholar 

  • El-Sayed AM, Garling DL Jr (1988) Carbohydrate-to-lipid ratios in diets for Tilapia zillii fingerlings. Aquaculture 73:157–163

    Article  CAS  Google Scholar 

  • Ellis SC, Reigh RC (1991) Effects of dietary lipid and carbohydrate levels on growth and body composition of juvenile red drum, Sciaenops ocellatus. Aquaculture 97:383–394

    Article  CAS  Google Scholar 

  • Ferré P, Foufelle F (2010) Hepatic steatosis: a role for de novo lipogenesis and the transcription factor SREBP-1c. Diabetes Obes Metab 12:83–92

    Article  PubMed  Google Scholar 

  • Gao W, Liu YJ, Tian LX, Mai KS, Liang GY, Yang HJ, Huai MY, Luo WJ (2010) Effect of dietary carbohydrate-to-lipid ratios on growth performance, body composition, nutrient utilization and hepatic enzymes activities of herbivorous grass carp (Ctenopharyngodon idella). Aquac Nutr 16:327–333

    Article  CAS  Google Scholar 

  • Garling DL Jr, Wilson RP (1977) Effects of dietary carbohydrate to lipid ratios on growth and body composition of fingerling channel catfish. Prog Fish-Cult 39:43–47

    Article  CAS  Google Scholar 

  • Gélineau A, Corraze G, Boujard T, Larroquet L, Kaushik S (2001) Relation between dietary lipid level and voluntary feed intake, growth, nutrient gain, lipid de position and hepatic lipogenesis in rainbow trout. Reprod Nutr Dev 41:487–503

    Article  PubMed  Google Scholar 

  • Ghanawi J, Roy L, Davis DA, Saoud IP (2011) Effects of dietary lipid levels on growth performance of marbled spinefoot rabbitfish Siganus rivulatus. Aquaculture 310:395–400

    Article  CAS  Google Scholar 

  • He AY, Liu CZ, Chen LQ, Ning LJ, Qin JG, Li JM, Zhang ML, Du ZY (2015a) Molecular characterization, transcriptional activity and nutritional regulation of peroxisome proliferator activated receptor gamma in Nile tilapia (Oreochromis niloticus). Gen Comp Endocrinol 223:139–147

    Article  CAS  PubMed  Google Scholar 

  • He AY, Ning LJ, Chen LQ, Chen YL, Xing Q, Li JM, Qiao F, Li DL, Zhang ML, Du ZY (2015b) Systemic adaptation of lipid metabolism in response to low- and high-fat diet in Nile tilapia (Oreochromis niloticus). Physiol Rep 3:e12485

    Article  PubMed  PubMed Central  Google Scholar 

  • Henderson RJ, Sargent J (1981) Lipid biosynthesis in rainbow trout, Salmo gairdnerii, fed diets differing in lipid content. Comp Biochem Physiol C 69:31–37

    Article  Google Scholar 

  • Hillgartner FB, Salati LM, Goodridge AG (1995) Physiological and molecular mechanisms involved in nutritional regulation of fatty acid synthesis. Physiol Rev 75:47–76

    CAS  PubMed  Google Scholar 

  • Ilich JZ, Kelly OJ, Kim Y, Spicer MT (2014) Low-grade chronic inflammation perpetuated by modern diet as a promoter of obesity and osteoporosis. Arh Hig Rada Toksikol 65:139–148

    Article  CAS  PubMed  Google Scholar 

  • Ji H, Li J, Liu P (2011) Regulation of growth performance and lipid metabolism by dietary n-3 highly unsaturated fatty acids in juvenile grass carp, Ctenopharyngodon idellus. Comp Biochem Physiol B 159:49–56

    Article  PubMed  Google Scholar 

  • Jobling M, Wandsvik A (1983) An investigation of factors controlling food intake in Arctic charr, Salvelinus alpinus L. J Fish Biol 23:391–404

    Google Scholar 

  • Jobling M (2001) Nutrient partitioning and the influence of feed composition on body composition. In: Houlihan D, Boujard T, Jobling M (eds) Food intake in fish. Blackwell, Oxford, pp 354–414

    Chapter  Google Scholar 

  • Kaushik SJ, Medale F (1994) Energy requirement, utilization and dietary supply to salmonids. Aquaculture 124:81–97

    Article  CAS  Google Scholar 

  • Kim S, Sohn I, Ahn JI, Lee KH, Lee YS, Lee YS (2004) Hepatic gene expression profiles in a long-term high-fat diet-induced obesity mouse model. Gene 340:99–109

    Article  CAS  PubMed  Google Scholar 

  • Kolditz CI, Plagnes-Juan E, Quillet E, Lefèvre F, Médale F (2010) Changes in white muscle transcriptome induced by dietary energy levels in two lines of rainbow trout (Oncorhynchus mykiss) selected for muscle fat content. Br J Nutr 103:629–642

    Article  CAS  PubMed  Google Scholar 

  • Lee DJ, Putnam GB (1973) The response of rainbow trout to varying protein/energy ratios in test diet. J Nutr 103:916–922

    CAS  PubMed  Google Scholar 

  • Leng XJ, Wu XF, Tian J, Li XQ, Guan L, Weng DC (2012) Molecular cloning of fatty acid synthase from grass carp (Ctenopharyngodon idella) and the regulation of its expression by dietary fat level. Aquac Nutr 18:551–558

    Article  CAS  Google Scholar 

  • Lesel R, Fromageot C, Lesel M (1986) Cellulose digestibility in grass carp, Ctenopharyngodon idella and in goldfish, Carassius auratus. Aquaculture 54:11–17

    Article  CAS  Google Scholar 

  • Li A, Yuan X, Liang XF, Liu L, Li J, Li B, Fang J, Li J, He S, Xue M, Wang J, Tao YX (2016a) Adaptations of lipid metabolism and food intake in response to low and high fat diets in juvenile grass carp (Ctenopharyngodon idellus). Aquaculture 457:43–49

    Article  CAS  Google Scholar 

  • Li H, Zheng Z, Cong-xin X, Bo H, Chao-yuan W, Gang H (2009) Isolation of cellulose—producing microbes from the intestine of grass carp (Ctenopharyngodon idellus). Environ Biol Fish 86:131–135

    Article  Google Scholar 

  • Li H, Wu S, Wirth S, Hao YT, Wang WW, Zou H, Li WX, Wang GT (2016b) Diversity and activity of cellulolytic bacteria, isolated from the gut contents of grass carp (Ctenopharyngodon idellus) (Valenciennes) fed on Sudan grass (Sorghum sudanense) or artificial feedstuffs. Aquac Res 47:153–164

    Article  CAS  Google Scholar 

  • Lin S, Thomas TC, Storlien LH, Huang XF (2000) Development of high fat diet-induced obesity and leptin resistance in C57Bl/6J mice. Int J Obes Relat Metab Disord 24:639–646

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Luo Z, Liu YJ, Mai KS, Tian LX, Liu DH, Tan XY, Lin HZ (2005) Effect of dietary lipid level on growth performance, feed utilization and body composition of grouper Epinephelus coioides juveniles fed isonitrogenous diets in floating net cages. Aquac Int 13:257–269

    Article  CAS  Google Scholar 

  • Martins DA, Valente LMP, Lall SP (2007) Effects of dietary lipid level on growth and lipid utilization by juvenile Atlantic halibut (Hippoglossus hippoglossus L.). Aquaculture 263:150–158

    Article  CAS  Google Scholar 

  • Morash AJ, Bureau DP, McClelland GB (2009) Effects of dietary fatty acid composition on the regulation of carnitine palmitoyltransferase (CPT) I in rainbow trout (Oncorhynchus mykiss). Comp Biochem Phys B 152:85–93

    Article  Google Scholar 

  • Nanton DA, Vegusdal A, Rørå AMB, Ruyter B, Baeverfjord G, Torstensen BE (2007) Muscle lipid storage pattern, composition, and adipocyte distribution in different parts of Atlantic salmon (Salmo salar) fed fish oil and vegetable oil. Aquaculture 265:230–243

    Article  CAS  Google Scholar 

  • Paspatis M, Boujard T (1996) A comparative study of automatic feeding and self-feeding in juvenile Atlantic salmon (Salmo salar) fed diets of different energy levels. Aquaculture 145:245–257

    Article  Google Scholar 

  • Pei Z, Xie S, Lei W, Zhu X, Yang Y (2004) Comparative study on the effect of dietary lipid level on growth and feed utilization for gibel carp (Carassius auratus gibelio) and Chinese longsnout catfish (Leiocassis longirostris Günther). Aquac Nutr 10:209–216

    Article  CAS  Google Scholar 

  • Peres H, Oliva-Teles A (1999) Effect of dietary lipid level on growth performance and feed utilization by European sea bass juvenile (Dicentrarchus labrax). Aquaculture 179:325–334

    Article  CAS  Google Scholar 

  • Regost C, Arzel J, Cardinal M, Robin J, Laroche M, Kaushik SJ (2001) Dietary lipid level, hepatic lipogenesis and flesh quality in turbot (Psetta maxima). Aquaculture 193:291–309

    Article  CAS  Google Scholar 

  • Robb DHF, Kestin SC, Warriss PD, Nute GR (2002) Muscle lipid content determines the eating quality of smoked and cooked Atlantic salmon (Salmo salar). Aquaculture 205:345–358

    Article  CAS  Google Scholar 

  • Rosen ED, Sarraf P, Troy AE, Bradwin G, Moore K, Milstone DS, Spiegelman BM, Mortensen RM (1999) PPARγ is required for the differentiation of adipose tissue in vivo and in vitro. Mol Cell 4:611–617

    Article  CAS  PubMed  Google Scholar 

  • Rosen ED, Spiegelman BM (2006) Adipocytes as regulators of energy balance and glucose homeostasis. Nature 444:847–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sá R, Pousão-Ferreira P, Oliva-Teles A (2006) Effect of dietary protein and lipid levels on growth and feed utilization of white sea bream (Diplodus sargus) juveniles. Aquac Nutr 12:310–321

    Article  Google Scholar 

  • Sheridan MA (1988) Lipid dynamics in fish: aspects of absorption, transportation, deposition and mobilization. Comp Biochem Physiol B 90:679–690

    CAS  PubMed  Google Scholar 

  • Sheridan MA, Kao YH (1998) Regulation of metamorphosis-associated changes in the lipid metabolism of selected vertebrates. Am Zool 38:350–368

    Article  CAS  Google Scholar 

  • Soengas JL (2014) Contribution of glucose- and fatty acid sensing systems to the regulation of food intake in fish. A Rev Gen Comp Endocrinol 205:36–48

    Article  CAS  Google Scholar 

  • Song LP, An L, Zhu YA, Li X, Wang Y (2009) Effects of dietary lipids on growth and feed utilization of jade perch, Scortum barcoo. J World Aquac Soc 40:266–273

    Article  Google Scholar 

  • Stanley JG (1974) Energy balance of white amur fed Egeria. Hyacinth Control J 12:62–66

    Google Scholar 

  • Tocher DR (2003) Metabolism and functions of lipids and fatty acids in teleost fish. Fish Sci 11:107–184

    Article  CAS  Google Scholar 

  • Tsai ML, Chen HY, Tseng MC, Chang RC (2008) Cloning of peroxisome proliferators activated receptors in the cobia (Rachycentron canadum) and their expression at different life-cycle stages under cage aquaculture. Gene 425:69–78

    Article  CAS  PubMed  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:1–12

  • Wang JT, Liu YJ, Tian LX, Mai KS, Du ZY, Wang Y, Yang HJ (2005) Effect of dietary lipid level on growth performance, lipid deposition, hepatic lipogenesis in juvenile cobia (Rachycentron canadum). Aquaculture 249:439–447

    Article  CAS  Google Scholar 

  • Weil C, Lefèvre F, Bugeon J (2013) Characteristics and metabolism of different adipose tissues in fish. Rev Fish Biol Fish 23:157–173

    Article  Google Scholar 

  • Wood JD, Enser M, Fisher AV, Nute GR, Sheard PR, Richardson RI, Hughes SI, Whittington FM (2008) Fat deposition, fatty acid composition and meat quality: a review. Meat Sci 78:343–358

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization (2006) Obesity and overweight (WHO Fact Sheet No. 311). WHO, Geneva

    Google Scholar 

  • Wu Z, Rosen ED, Brun R, Hauser S, Adelmant G, Troy AE, Catherine M, Gretchen JD, Spiegelman BM (1999) Cross-regulation of C/EBPα and PPARγ controls the transcriptional pathway of adipogenesis and insulin sensitivity. Mol Cell 3:151–158

    Article  CAS  PubMed  Google Scholar 

  • Xu JH, Qin J, Yan BL, Zhu M, Luo G (2011) Effects of dietary lipid levels on growth performance, feed utilization and fatty acid composition of juvenile Japanese seabass (Lateolabrax japonicus) reared in seawater. Aquac Int 19:79–89

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Basic Research Program of China (2014CB138601), the National Natural Science Foundation of China (31272641) and Fundamental Research Funds for the Central Universities (2662015PY041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu-Fang Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, X., Liang, XF., Liu, L. et al. Fat deposition pattern and mechanism in response to dietary lipid levels in grass carp, Ctenopharyngodon idellus . Fish Physiol Biochem 42, 1557–1569 (2016). https://doi.org/10.1007/s10695-016-0240-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-016-0240-4

Keywords

Navigation