Skip to main content
Log in

Spectral sensitivity and photoresponse in the rock bream Oplegnathus fasciatus and their relationships with the absorption maximum of the photoreceptor

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The spectral characteristics of visual pigments are a major determinant in eliciting a response to light. To study the absorption maximum of the photoreceptors and their sensitivity to light in fish, rod outer segments (ROS) and cone cells were purified from the rock bream Oplegnathus fasciatus adapted to the dark. Ultraviolet/visible spectroscopic analyses of the ROS in the dark and its difference spectra indicated an absorption maximum of the visual pigment at ~ 500 nm, and each eye of 1-year-old rock bream contained at least 1.2 nmol of rhodopsin-like visual pigments. Microspectrophotometric analysis of the cone cell outer segments led to identification of three visual pigments with individual absorption maxima at 425, 520, and 585 nm. Monochromatic light-emitting diode (LED) modules with different wavelengths (violet 405 nm, blue 465 nm, cyan 505 nm, green 530 nm, amber 590 nm, and red 655 nm) were constructed to examine the spectral sensitivity and photoresponse in association with the absorption maximum of the photoreceptor. Analysis of chromophore decay upon illumination with each LED at low (27 μmol/m2/s) and high (343 μmol/m2/s) intensities showed the highest sensitivity of the photoreceptor upon illumination with the 505-nm cyan LED, followed by LEDs with wavelengths of 530 nm > 465 nm > 405 nm > 590 nm > 655 nm. Photoresponse analysis of the fish using a video tracking system, in the dark and upon illumination, also showed faster movement of fish with illumination with the cyan LED followed by in the order of green ≈ blue > violet > amber > red. These results indicated that a light with a wavelength closer to the absorption maximum of rhodopsin was more effective in eliciting a response to the light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Archer S, Hope A, Partridge JC (1995) The molecular basis for the green-blue sensitivity shift in the rod visual pigments of the European eel. Proc Biol Sci 262:289–295

    Article  CAS  PubMed  Google Scholar 

  • Bapary MAJ, Amin MN, Takeuchi Y, Takemura A (2011) The stimulatory effects of long wavelengths of light on the ovarian development in the tropical damselfish, Chrysiptera cyanea. Aquaculture 314:188–192

    Article  Google Scholar 

  • Bliss AF (1948) The absorption spectra of visual purple of the squid and its bleaching products. J Biol Chem 176:563–569

    Article  CAS  PubMed  Google Scholar 

  • Bowmaker JK, Wagner HJ (2004) Pineal organs of deep-sea fish: photopigments and structure. J Exp Biol 207:2379–2387

    Article  PubMed  Google Scholar 

  • Choi Y, Kim J, Park J (2002) Marine fishes of Korea, Kyo-Hak, Seoul pp 646

  • Dartnall HJ (1959) On the question of the narrow-band pigment of the frog’s retina. J Physiol 145:630–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ekstrőm P, Meissl H (1997) The pineal organ of teleost fishes. Rev Fish Biol Fish 7:199–284

    Article  Google Scholar 

  • Fröhlich E, Wagner H (1996) Rod outer segment renewal in the retinae of deep-sea fish. Vis Res 36:3183–3194

    Article  PubMed  Google Scholar 

  • Govardovskii VI, Fyhrquist N, Reuter T, Kuzmin DG, Donner K (2000) In search of the visual pigment template. Vis Neurosci 17:509–528

    Article  CAS  PubMed  Google Scholar 

  • Hanyu I, Tamura T, Niwa H (1973) Electroretinograms and retinal ganglion cell responses in skipjack tuna. Bull Jpn Soc Sci Fish 39:265–273

    Article  Google Scholar 

  • Harosi FI (1976) Spectral relations of cone pigments in goldfish. J Gen Physiol 68:65–80

    Article  CAS  PubMed  Google Scholar 

  • Hart NS, Lisney TJ, Marshall NJ, Collin SP (2004) Multiple cone visual pigments and the potential for trichromatic color vision in two species of elasmobranch. J Exp Biol 207:4587–4594

    Article  PubMed  Google Scholar 

  • Hart NS, Bailes HJ, Vorobyev M, Marshall NJ, Collin SP (2008) Visual ecology of the Australian lungfish (Neoceratodus forsteri). BMC Ecol 8:21

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasegawa E (1995) Studies on fish catching process by night-time purse seining method and behavior of object fish. Nippon Suish Gakk 61:485–489

    Article  Google Scholar 

  • Hawryshin CW, Harosi FI (1991) Ultraviolet photoreception in carp: microspectrophotometry and behaviorally determined action spectra. Vis Res 31:567–576

    Article  Google Scholar 

  • Hope AJ, Partridge JC, Hayes PK (1998) Switch in rod opsin gene expression in the European eel, Anguilla anguilla (L.). Proc Biol Sci 265:869–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunt DM, Fitzgibbon J, Slobodyanyuk SJ, Bowmakers JK (1996) Spectral tuning and molecular evolution of rod visual pigments in the species flock of cottoid fish in Lake Baikal. Vis Res 36:1217–1224

    Article  CAS  PubMed  Google Scholar 

  • Jang JC, Choi MJ, Yang YS, Lee HB, Yu YM, Kim JM (2016) Dim-light photoreceptor of chub mackerel Scomber japonicus and the photoresponse upon illumination with LEDs of different wavelengths. Fish Physiol Biochem 42:1015–1025

    Article  CAS  PubMed  Google Scholar 

  • Jeong KS, Kim SM, Bang IC, Kim SY, Lee WK (1998) Induced spawning of striped knife-jaw, Oplegnathus fasciatus by manipulating water temperature and photoperiod. J Aquac 11:141–149

    Google Scholar 

  • Khorana H (2000) Molecular biology of light transduction by the mammalian photoreceptor, rhodopsin. J Biomol Struct Dyn 17:1–16

    Article  PubMed  Google Scholar 

  • Kondrashev SL, Gnyubkina VP, Zueva LV (2012) Structure and spectral sensitivity of photoreceptors of two anchovy species: Engraulis japonicus and Engraulis encrasicolus. Vis Res 68:19–27

    Article  PubMed  Google Scholar 

  • Lythgoe JN (1979) Ecology of vision. Clarendon Press, Oxford

    Google Scholar 

  • Lythgoe J, Muntz W, Partridge J, Shand J, Williams DM (1994) The ecology of the visual pigments of snappers (Lutjanidae) on the Great Barrier Reef. J Comp Physiol A 174:461–467

    Article  Google Scholar 

  • Matsumoto T, Ihara H, Ishida Y, Yamamoto S, Murata O, Ishibashi Y (2010) Spectral sensitivity of juvenile chub mackerel (Scomber japonicus) in visible and ultraviolet light. Fish Physiol Biochem 36:63–70

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto T, Okada T, Sawada Y, Ishibashi Y (2012) Visual spectral sensitivity of photopic juvenile Pacific bluefin tuna (Thunnus orientalis). Fish Physiol Biochem 38:911–917

    Article  CAS  PubMed  Google Scholar 

  • McFarland W (1991) The visual world of coral reef fishes. In: Sale PF (ed) The ecology of fishes on coral reefs. Academic Press, San Diego, pp 16–38

    Chapter  Google Scholar 

  • Migaud H, Cowan M, Taylor J, Ferguson HW (2007) The effect of spectral composition and light intensity on melatonin, stress and retinal damage in post-smolt Atlantic salmon, Salmo salar. Aquaculture 270:390–404

    Article  CAS  Google Scholar 

  • Myrberg A, Fuiman LA (2002) The sensory world of coral reef fishes. In: Sale PF (ed) Coral reef fishes : dynamics and diversity in a complex ecosystem. Academic Press, San Diego, pp 123–148

    Chapter  Google Scholar 

  • O’day WT, Young RW (1978) Rhythmic daily shedding of outer-segment membranes by visual cells in the goldfish. J Cell Biol 76:593–604

    Article  PubMed  Google Scholar 

  • Okano T, Fukada Y, Artamonov ID, Yoshizawa T (1989) Purification of cone visual pigments from chicken retina. Biochemistry 28:8848–8856

    Article  CAS  PubMed  Google Scholar 

  • Olle M, Viršile A (2013) The effects of light-emitting diode lighting on greenhouse plant growth and quality. Agric Food Sci 22:223–234

    Article  Google Scholar 

  • Palczewski K (2006) G protein-coupled receptor rhodopsin. Annu Rev Biochem 75:743–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papermaster DS, Dreyer WJ (1974) Rhodopsin content in the outer segment membranes of bovine and frog retinal rods. Biochemistry 13:2438–2444

    Article  CAS  PubMed  Google Scholar 

  • Remtulla S, Hallet PE (1985) A schematic eye for the mouse, and comparison with the rat. Vis Res 25:21–31

    Article  CAS  PubMed  Google Scholar 

  • Shand J, Hart NS, Thomas N, Partridge JC (2002) Developmental changes in the cone visual pigments of black bream Acanthopagrus butcheri. J Exp Biol 205:3661–3667

    Article  PubMed  Google Scholar 

  • Shin HS, Lee J, Choi CY (2011) Effects of LED light spectra on oxidative stress and the protective role of melatonin in relation to the daily rhythm of the yellowtail clownfish, Amphiprion clarkia. Comp Biochem Physiol A 160:221–228

    Article  CAS  Google Scholar 

  • Tachibanaki S, Tsushima S, Kawamura S (2001) Low amplification and fast visual pigment phosphorylation as a mechanisms characterizing cone photoresponses. Proc Natl Acad Sci U S A 98:1404–14049

    Article  Google Scholar 

  • Theiss SM, Lisney TJ, Collin SP, Hart NS (2007) Colour vision and visual ecology of the blue-spotted maskray, Dasyatis kuhlii Müller & Henle, 1814 193:67–79

  • Villamizar N, García-Alcazar A, Sánchez-Vázquez F (2009) Effect of light spectrum and photoperiod on the growth, development and survival of European sea bass (Dicentrarchuslabrax) larvae. Aquaculture 292:80–86

    Article  Google Scholar 

  • Volpato GL, Barreto R (2001) Environmental blue light prevents stress in the fish Nile tilapia. Braz J Med Biol Res 34:1041–1045

    Article  CAS  PubMed  Google Scholar 

  • Wang FY, Yan HY, Chen JS, Wang TY, Wang D (2009) Adaptation of visual spectra and opsin genes in seabreams. Vis Res 49:1860–1868

    Article  PubMed  Google Scholar 

  • Yamanome T, Mizusawa K, Hasegawa E, Takahashi A (2009) Green light stimulates somatic growth in the barfin flounder Verasper moseri. J Exp Zool A 311:73–79

    Article  Google Scholar 

  • Yokoyama S (1995) Amino acid replacements and wavelength absorption of visual pigments in vertebrates. Mol Biol Evol 12:53–61

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Prof. MS Noh, Dept. of Statistics, PKNU, for his help on statistical analysis. This research was a part of the project titled LED-Marine Technology Convergence R&D Center funded by the Ministry of Ocean and Fisheries, Korea.

Funding

YR Kim was also supported by KIOST-PKNU Grant. Noh was supported by a grant from the National Institute of Fisheries Science (R2018001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Myoung Kim.

Ethics declarations

The housing and maintenance of the animals and ROS preparation conformed to the regulations of The Institutional Animal Care and Use Committees of NIFS and PKNU.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, JC., Noh, G.E., Kim, YR. et al. Spectral sensitivity and photoresponse in the rock bream Oplegnathus fasciatus and their relationships with the absorption maximum of the photoreceptor. Fish Physiol Biochem 45, 1759–1769 (2019). https://doi.org/10.1007/s10695-019-00672-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-019-00672-z

Keywords

Navigation