Skip to main content
Log in

Expected shortfall for the makespan in activity networks under imperfect information

  • Published:
Flexible Services and Manufacturing Journal Aims and scope Submit manuscript

Abstract

This paper deals with the evaluation of the expected shortfall or the conditional value-at-risk for the makespan in scheduling problems represented as temporal networks under incomplete and uncertain information. We consider temporal activity network representations of scheduling problems affected by uncertainties related to the activity durations and we assume that for these uncertainties only incomplete or imperfect information is available. More precisely, for each activity only the interval for its integer valued duration is known to the scheduler. We address the evaluation of the expected shortfall associated to a feasible schedule discussing its importance in scheduling applications. We propose lower and upper bounds, heuristics to determine a fast computational estimation of the expected shortfall, and an exact method for a class of activity networks. The experimental results show that the proposed method can enable to use the expected shortfall as optimization criterion for wide classes of scheduling approaches considering risk-aversion in different practical contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Notes

  1. All the related data and documentation are available at the URL http://www.om-db.wi.tum.de/psplib/.

References

  • Artigues C, Leus R, Talla Nobibon F (2013) Robust optimization for resource-constrained project scheduling with uncertain activity durations. Flex Serv Manuf J 25:175–205

    Google Scholar 

  • Atakan S, Bülbül K, Noyan N (2017) Minimizing value-at-risk in single-machine scheduling. Ann Oper Res 248(1–2):25–73

    MathSciNet  MATH  Google Scholar 

  • Baker KR (2014) Setting optimal due dates in a basic safe-scheduling model. Comput Oper Res 41:109–114

    MathSciNet  MATH  Google Scholar 

  • Baker K, Trietsch D (2009) Principles of sequencing and scheduling. Wiley, New York

    MATH  Google Scholar 

  • Bang-Jensen J, Gutin G (2008) Digraphs: theory, algorithms and applications, 2nd edn. Springer, London

    MATH  Google Scholar 

  • Bein WM, Kamburowski J, Stallmann MFM (1992) Optimal reduction of two-terminal directed acyclic graphs. SIAM J Comput 21(6):1112–1129

    MathSciNet  MATH  Google Scholar 

  • Bertsimas D, Lauprete GJ, Samarov A (2004) Shortfall as a risk measure: properties, optimization and applications. J Econ Dyn Control 28(7):1353–382

    MathSciNet  MATH  Google Scholar 

  • Canon LC, Jeannot E (2010) Evaluation and optimization of the robustness of DAG schedules in heterogeneous environments. IEEE Trans Parallel Distrib Syst 21(4):532–546

    Google Scholar 

  • Catalão JPS, Pousinho HMI, Contreras J (2012) Optimal hydro scheduling and offering strategies considering price uncertainty and risk management. Energy 37:237–244

    Google Scholar 

  • Chanas S, Zieliński P (2002) The computational complexity of the critical problems in a network with interval activity times. Eur J Oper Res 136:541–550

    MATH  Google Scholar 

  • Chanas S, Dubois D, Zieliński P (2002) On the sure criticality of tasks in activity networks with imprecise durations. IEEE Trans Syst Man Cybern B Cybern 32(4):393–407

    Google Scholar 

  • Chang Z, Song S, Zhang Y, Ding J-Y, Zhang R, Chiong R (2017) Distributionally robust single machine scheduling with risk aversion. Eur J Oper Res 256:261–274

    MathSciNet  MATH  Google Scholar 

  • Crabill T, Maxwell W (1969) Single machine sequencing with random processing times and random due-dates. Nav Res Logist Q 16:549–555

    MathSciNet  MATH  Google Scholar 

  • Damelin S, Miller W (2011) The mathematics of signal processing. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Daniels RL, Kouvelis P (1995) Robust scheduling to hedge against processing time uncertainty in single-stage production. Manag Sci 41(2):363–376

    MATH  Google Scholar 

  • De P, Ghosh JB, Wells CE (1992) Expectation-variance analyss of job sequences under processing time uncertainty. Int J Prod Econ 28(3):289–297

    Google Scholar 

  • Demeulemeester EL, Herroelen WS (2002) Project scheduling a research handbook. Kluwer Academic, Dordrecht

    MATH  Google Scholar 

  • De Reyck B, Demeulemeester E, Herroelen W (1999) Algorithms for scheduling projects with generalized precedence relations. In: Wȩglarz J (ed) Project scheduling, vol 14. International series in operations research and management science. Springer, Boston

    MATH  Google Scholar 

  • Elmaghraby SE (1977) Activity networks: project planning and control by network models. Wiley, New York

    MATH  Google Scholar 

  • Elmaghraby SE (1990) Project bidding under deterministic and probabilistic activity durations. Eur J Oper Res 49:14–34

    MATH  Google Scholar 

  • Elmaghraby SE (2005) On the fallacy of averages in project risk management. Eur J Oper Res 165(2):307–313

    MathSciNet  MATH  Google Scholar 

  • Fang C, Kolisch R, Wang L, Mu C (2015) An estimation of distribution algorithm and new computational results for the stochastic resource-constrained project scheduling problem. Flex Serv Manuf J 27(4):585–605

    Google Scholar 

  • Framinan JM, Leisten R, Ruiz García R (2014) Manufacturing scheduling systems. An integrated view on models, methods and tools. Springer, London

    MATH  Google Scholar 

  • Fulkerson DR (1962) Expected critical path lengths in PERT networks. Oper Res 10:808–817

    MATH  Google Scholar 

  • García-González J, Parrilla E, Mateo A (2007) Risk-averse profit-based optimal scheduling of a hydro-chain in the day-ahead electricity market. Eur J Oper Res 181:1354–1369

    MATH  Google Scholar 

  • Hagstrom JN (1988) Computational complexity of PERT problems. Networks 18(2):139–147

    MathSciNet  Google Scholar 

  • Hall NG (2016) Research and teaching opportunities in project management. INFORMS Tutor Oper Res. https://doi.org/10.1287/educ.2016.0146

  • Hartmann S, Kolisch R (2000) Experimental evaluation of state-of-the-art heuristics for resource constrained project scheduling. Eur J Oper Res 127(2):394–407

    MATH  Google Scholar 

  • Herroelen WS, Leus R (2005) Project scheduling under uncertainty: survey and research potentials. Eur J Oper Res 165(2):289–306

    MATH  Google Scholar 

  • Ivanescu CV, Fransoo JC, Bertrand JWM (2002) Makespan estimation and order acceptance in batch process industries when processing times are uncertain. OR Spectrum 24:467–495

    MATH  Google Scholar 

  • Kalinchenko K, Veremyev A, Boginski V, Jeffcoat DE, Uryasev S (2011) Robust connectivity issues in dynamic sensor networks for area surveillance under uncertainty. Pac J Optim 7:235–248

    MathSciNet  MATH  Google Scholar 

  • Kelley JE Jr (1961) Critical-path planning and scheduling: mathematical basis. Oper Res 9(3):296–320

    MathSciNet  MATH  Google Scholar 

  • Kolisch R, Hartmann S (2006) Experimental investigation of heuristics for resource-constrained project scheduling: an update. Eur J Oper Res 174(1):23–37

    MATH  Google Scholar 

  • Kolisch R, Sprecher A (1996) PSPLIB—a project scheduling library. Eur J Oper Res 96:205–216

    MATH  Google Scholar 

  • Lai T-C, Sotskov YN (1999) Sequencing with uncertain numerical data for makespan minimisation. J Oper Res Soc 50:230–243

    MATH  Google Scholar 

  • Larsen R, Pranzo M (2019) A framework for dynamic rescheduling problems. Int J Prod Res 57(1):16–33

    Google Scholar 

  • Lawrence SR, Sewell EC (1997) Heuristic, optimal, static, and dynamic schedules when processing times are uncertain. J Oper Manag 15:71–82

    Google Scholar 

  • Li Z, Ierapetritou M (2008) Process scheduling under uncertainty: review and challenges. Comput Chem Eng 32:715–727

    Google Scholar 

  • Luh PB, Chen D, Thakur LS (1999) An effective approach for job-shop scheduling with uncertain processing requirements. IEEE Trans Robot Autom 15(2):715–727

    Google Scholar 

  • Meloni C, Pacciarelli D, Pranzo M (2004) A rollout metaheuristic for job shop scheduling problems. Ann Oper Res 131(1–4):215–235

    MathSciNet  MATH  Google Scholar 

  • Pinedo M (2001) Scheduling: theory, algorithms, and systems, 2nd edn. Prentice Hall, Upper Saddle, NJ

    Google Scholar 

  • Pranzo M, Meloni C, Pacciarelli D (2003) A new class of greedy heuristics for job shop scheduling problems. Lect Notes Comput Sci 2647:223–236

    MathSciNet  MATH  Google Scholar 

  • Pranzo M, Pacciarelli D (2016) An iterated greedy metaheuristic for the blocking job shop scheduling problem. J Heurist 22(4):587–611

    Google Scholar 

  • Ramponi FA, Campi MC (2017) Expected shortfall: heuristics and certificates. Eur J Oper Res 267(3):1003–1013

    MathSciNet  MATH  Google Scholar 

  • Rockafellar RT, Uryasev S (2000) Optimization of conditional value-at-risk. J Risk 2(3):21–41

    Google Scholar 

  • Rockafeller RT (2007) Coherent approaches to risk in optimization under uncertainty. INFORMS Tutor Oper Res. https://doi.org/10.1287/educ.1073.0032

  • Rothkopf MH (1966) Scheduling with random service times. Manag Sci 12(9):707–713

    MathSciNet  MATH  Google Scholar 

  • Sabuncuoglu I, Bayiz M (2000) Analysis of reactive scheduling problems in a job shop environment. Eur J Oper Res 126:567–586

    MATH  Google Scholar 

  • Sarin SC, Nagarajan B, Liao L (2010) Stochastic scheduling: expectation-variance analysis of a schedule. Cambridge University Press, New York

    MATH  Google Scholar 

  • Sarin SC, Sherali HD, Liao L (2014) Minimizing conditional-value-at-risk for stochastic scheduling problems. J Sched 17:5–15

    MathSciNet  MATH  Google Scholar 

  • Słowiński R, Hapke M (eds) (2010) Scheduling under fuzziness. Physica-Verlag, Heidelberg

    MATH  Google Scholar 

  • Szelke E, Kerr RM (1994) Knowledge-based reactive scheduling. Prod Plan Control 5(2):124–145

    Google Scholar 

  • Tao L, Wu DD, Liu S, Dolgui A (2018) Optimal due date quoting for a risk-averse decision-maker under CVaR. Int J Prod Res 56(5):1934–1959

    Google Scholar 

  • Urgo M, Váncza J (2018) A branch-and-bound approach for the single machine maximum lateness stochastic scheduling problem to minimize the value-at-risk. Flex Serv Manuf J. https://doi.org/10.1007/s10696-018-9316-z

    Article  Google Scholar 

  • Vieira GE, Herrmann JW, Lin E (2003) Rescheduling manufacturing systems: a framework of strategies, policies and methods. J Sched 6:39–62

    MathSciNet  MATH  Google Scholar 

  • Wiesemann W (2012) Optimization of temporal networks under uncertainty. Springer, Heidelberg

    Google Scholar 

  • Wu CW, Brown KN, Beck JC (2009) Scheduling with uncertain durations: modeling \(\beta\)-robust scheduling with constraints. Comput Oper Res 36:2348–2356

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Meloni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meloni, C., Pranzo, M. Expected shortfall for the makespan in activity networks under imperfect information. Flex Serv Manuf J 32, 668–692 (2020). https://doi.org/10.1007/s10696-019-09358-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10696-019-09358-3

Keywords

Navigation