Skip to main content
Log in

Plane steady-state incompressible fluid flow through a porous medium with a nonlinear resistance laws in the presence of a sink

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

Plane nonlinear fluid flows through a porous medium which simulate a sink located at the same distance from the roof and floor of the stratum for two nonlinear flow laws are constructed. The following flow laws are taken: a power law and a law of special form reducing to analytic functions in the hodograph plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Basniev, I. N. Kochina, and V. M. Maksimov, Subsurface Hydromechanics [in Russian], Nedra, Moscow (1993).

    Google Scholar 

  2. H. Darcy, Les Fontaines Publiques de la Ville de Dijon, Dalmont, Paris (1856).

    Google Scholar 

  3. Ph. Forchheimer, Hydraulik, Teubner, Leipzig, Berlin (1930).

    MATH  Google Scholar 

  4. V. N. Shchelkachev and B. B. Lapuk, Subsurface Hydraulics [in Russian], NITs Regulyarnaya i Khaoticheskaya Dinamika, Izhevsk (2001).

    Google Scholar 

  5. A. A. Krasnopol’skii, “Groundwater and artesian wells,” Gornyi Zh., No. 3–6 (1912).

  6. V. B. Andreev and S. A. Kryakvina, “Source function of the grid Laplace operator,” Zh. Vychislit. Mat. Matem. Fiz., 12, No. 2, 364–373 (1972).

    Google Scholar 

  7. D. W. Peaceman, “Interpretation of wellblock pressure in numerical reservoir simulation,” SPE Paper 6893; SPE J., Trans. AIME, 253, 183–194 (1978).

    Google Scholar 

  8. V. B. Andreev and S. A. Kryakvina, “Fundamental solution of a single-parameter family of finite-difference approximations of the Laplace operator in a plane,” Zh. Vychislit. Mat. Matem. Fiz., 13, No. 2, 313–355 (1973).

    Google Scholar 

  9. D. W. Peaceman, “Representation of a horizontal well in numerical reservoir simulation,” SPE 21217, Proc. Of 11th SPE Symp. on Reservoir Simulation. Anaheim. California, 1991, pp. 17–20; it SPE Adv. Techn. Ser. 1, 7–16 (1993).

  10. P. N. Vabishchevich, “Numerical solution of problemswith singularities on locally concentrated grids,” Mat. Modelirovanie, 7, No. 1, 61–68 (1995).

    MATH  MathSciNet  Google Scholar 

  11. R. Eving, R. Lazarov, S. L. Lyons, D. V. Papavassilion, J. Pasciak, and G. Qin, Numerical Well Model for Non-Darcy Flow through Isotropic Porous Media, Computational Geosciences (1998).

  12. R. Eving, R. Lazarov, S. L. Lyons, D. V. Papavassilion, J. Pasciak, and G. Qin, “Numerical well model for non-Darcy flow through isotropic porous media,” ISC Research Report, ISC-98-11-MATH (1998).

  13. D. V. Papavassilion and S. L. Lyons, “Non-Darcy flow through porous media: Numerical and physical issues,” in: Proc. Institute for Multifluid Science and Technology, 2nd Annual Meeting, Santa Barbara (1998).

  14. S. A. Khristianovich, “Underground water flow not obeying Darcy’s law,” Prikl. Mat. Mekh., 4, No. 1, 33–52 (1940).

    Google Scholar 

  15. M. G. Bernadiner and V. M. Entov, Hydrodynamic Theory of Anomalous Fluid Flows through Porous Media [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  16. L. S. Leibenzon, Oil-Field Mechanics, Vol. 2 [in Russian], Gosgeonefteizdat, Moscow (1934).

    Google Scholar 

  17. A. P. Chernyaev and M. V. Koroteev, “Nonlinear seepage models of fluid inflow into a horizontal well,” in: Mathematics. Computer. Education, Pt. 2, No. 8 [in Russian], Progress-Traditsiya, Moscow (2001), pp. 323–328.

    Google Scholar 

  18. A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  19. A. D. Polyunin, Handbook on Linear Equations of Mathematical Physics [in Russian], Fizmatlit, Moscow (2001).

    Google Scholar 

  20. A. P. Chernyaev and M. V. Koroteev, “Construction of the Green’s function in the hodograph plane for a problem of nonlinear seepage flow to a horizontal well in accordance with a power law,” in: Modern Problems of Basic and Applied Sciences. Abstracts of 43rd Conf. of Moscow Physical and Technical Institute, Part 7, Moscow-Dolgoprudnyi (2000), p. 6.

  21. V. V. Sokolovskii, “Nonlinear underground water flow through porous media,” Prikl. Mat. Mekh., 13, No. 5, 525–536 (1949).

    MathSciNet  Google Scholar 

  22. E. G. Sheshukov and V. M. Fomin, “On nonlinear theory of flow through porous media,” in: Vacuum Technology, Vol. 2 [in Russian], Tatknigoizdat (1970), pp. 83–89.

    Google Scholar 

  23. M. A. Lavrent’ev and B. V. Shabat, Methods of Complex Variable Theory [in Russian], Nauka, Moscow (1987).

    MATH  Google Scholar 

  24. M. A. Evgrafov, Analytic Functions [in Russian], Nauka, Moscow (1991).

    Google Scholar 

  25. K. S. Basniev, Z. S. Aliev, and V. V. Chernykh,Methods of Calculating the Production Rate of Horizontal Inclined and Multi-Hole Gas Wells [in Russian], IRTs Gasprom, Moscow (1999).

    Google Scholar 

Download references

Authors

Additional information

__________

Translated from Izvestiya Rossiiskoi Academii Nauk, Mekhanika Zhidkosti i Gaza, No. 6, 2006, pp. 114–124.

Original Russian Text Copyright © 2006 by Koroteev and Chernyaev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koroteev, M.V., Chernyaev, A.P. Plane steady-state incompressible fluid flow through a porous medium with a nonlinear resistance laws in the presence of a sink. Fluid Dyn 41, 957–966 (2006). https://doi.org/10.1007/s10697-006-0110-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10697-006-0110-3

Keywords

Navigation