Skip to main content
Log in

Thermal fracture as a framework for quasi-static crack propagation

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

We address analytically and numerically the problem of crack path prediction in the model system of a crack propagating under thermal loading. We show that one can explain the instability from a straight to a wavy crack propagation by using only the principle of local symmetry and the Griffith criterion. We then argue that the calculations of the stress intensity factors can be combined with the standard crack propagation criteria to obtain the evolution equation for the crack tip within any loading configuration. The theoretical results of the thermal crack problem agree with the numerical simulations we performed using a phase field model. Moreover, it turns out that the phase-field model allows to clarify the nature of the transition between straight and oscillatory cracks which is shown to be supercritical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acerbi E, Braides A (1999) Approximation of free-discontinuity problems by elliptic functionals via Γ-convergence. Asymptot Anal 21: 317–329

    MATH  MathSciNet  Google Scholar 

  • Adda-Bedia M, Pomeau Y (1995) Crack instabilties of a heated glass strip. Phys Rev E 52: 4105–4113

    Article  ADS  CAS  Google Scholar 

  • Adda-Bedia M, Arias R, Ben Amar M, Lund F (1999) Generalized Griffith criterion for dynamic fracture and the stability of crack motion at high velocities. Phys Rev E 60: 2366–2376

    Article  ADS  CAS  Google Scholar 

  • Ambrosio L, Tortorelli VM (1990) Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence. Comm Pure Appl Math 43: 999–1036

    Article  MATH  MathSciNet  Google Scholar 

  • Ambrosio L, Tortorelli VM (1992) On the approximation of free discontinuity problems. Boll Un Mat Ital B 6: 105–123

    MATH  MathSciNet  Google Scholar 

  • Amestoy M, Leblond JB (1992) Crack paths in plane situations–II. Detailed form of the expansion of the stress instensity factors. Int J Solids Struct 29: 465–501

    Article  MATH  MathSciNet  Google Scholar 

  • Aranson IS, Kalatsky VA, Vonokur VM (2000) Continuum field description of crack propagation. Phys Rev Lett 85: 118–121

    Article  PubMed  ADS  CAS  Google Scholar 

  • Audoly B, Reis PM, Roman B (2005) Cracks in brittle elastic plates: when geometry rules fracture paths. Phys Rev Lett 95: 025502

    Article  PubMed  ADS  CAS  Google Scholar 

  • Bahr HA, Gerbatsch A, Bahr U, Weiss HJ (1995) Oscillatory instability in thermal cracking: a first-order phase-transition phenomenon. Phys Rev E 52: 240–243

    Article  ADS  CAS  Google Scholar 

  • Barenblatt G., Cherepanov G (1961) On brittle cracks under longitudinal shear. PMM 25: 1110–1119

    MathSciNet  Google Scholar 

  • Bilby BA, Cardew GE (1975) The crack with a kinked tip. Int J Fract 11: 708–712

    Article  Google Scholar 

  • Bouchbinder E, Hentschel HGE, Procaccia I (2003) Dynamical instabilities of quasistatic crack propagation under thermal stress. Phys Rev E 68: 036601

    Article  ADS  Google Scholar 

  • Braides A (1998) Approximation of free-discontinuity problems. Springer-Verlag, Berlin

    MATH  Google Scholar 

  • Broberg KB (1999) Cracks and fracture. Academic Press, London

    Google Scholar 

  • Caginalp G, Fife P (1986) Phase field methods for interfacial boundaries. Phys Rev B 33: 7792–7794

    Article  ADS  CAS  MathSciNet  Google Scholar 

  • Collins JB, Levine H (1986) Diffuse interface model of diffusion-limited cristal growth. Phys Rev B 31: 6119–6122

    Article  ADS  Google Scholar 

  • Cotterell B, Rice JR (1980) Slightly curved or kinked cracks. Int J Fract 16: 155–169

    Article  Google Scholar 

  • Deegan RD, Chheda S, Patel L, Marder M, Swinney HL, Kim J, Lozanne A (2003) Wavy and rough cracks in silicon. Phys Rev E 67: 066209

    Article  ADS  Google Scholar 

  • Eastgate LO, Sethna JP, Rauscher M, Cretegny T, Chen CS, Myers CR (2002) Fracture in mode I using a conserved phase-field model. Phys Rev E 65: 036117

    Article  ADS  CAS  Google Scholar 

  • Erdogan G, Sih GC (1963) On the crack extension in plates under plane loading and transverse shear. J Basic Eng 85: 519–527

    Google Scholar 

  • Etchebarria B, Folch R, Karma A, Plapp P (2004) Quantitative phase-field model of alloy solidification. Phys Rev E 70: 061604

    Article  ADS  Google Scholar 

  • Fineberg J, Marder M (1999) Instability in dynamic fracture. Phys Rep 313: 2–108

    Article  ADS  MathSciNet  Google Scholar 

  • Folch R, Casademunt J, Hernandez-Machado A (2000) Viscous fingering in liquid crystals: anisotropy and morphological transitions. Phys Rev E 61: 6632–6638

    Article  ADS  CAS  Google Scholar 

  • Freund LB (1990) Dynamic Fracture Mechanics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Ghatak A, Mahadevan L (2003) Crack street: the cycloidal wake of a cylinder ripping through a thin solid sheet. Phys Rev Lett 91: 215507

    Article  PubMed  ADS  CAS  Google Scholar 

  • Gol’dstein RV, Salganik RL (1974) Brittle fracture of solids with arbitrary cracks. Int J Fract 10: 507–523

    Article  Google Scholar 

  • Griffith AA (1920) The phenomenon of rupture and flow in solid. Phil Trans R Soc Lond Ser A 221: 163–198

    Article  ADS  Google Scholar 

  • Hakim V, Karma A (2005) Crack path prediction in anisotropic brittle materials. Phys Rev Lett 95: 235501

    Article  PubMed  ADS  Google Scholar 

  • Hakim V, Karma A (2009) Laws of crack motion and phase-field models of fracture. J Mech Phys Solids 57: 342–368

    Article  ADS  CAS  Google Scholar 

  • Henry H, Levine H (2004) Dynamic instabilities of fracture under biaxial strain using a phase field model. Phys Rev Lett 93: 105504

    Article  PubMed  ADS  Google Scholar 

  • Henry H (2008) Study of the branching instability using a phase field model of inplane crack propagation. EPL 83: 16004

    Article  ADS  Google Scholar 

  • Hodgdon JA, Sethna JP (1993) Derivation of a general three-dimensional crack-propagation law–A generalization of the principle of local symmetry. Phys Rev B 47: 4831–4840

    Article  ADS  Google Scholar 

  • Irwin GR (1957) Analysis of stresses and strains near the end of a crack traversing a plate. J Appl Mech 24: 361–364

    Google Scholar 

  • Karma A, Rappel WJ (1998) Quantitative phase-field modeling of dendritic growth in two and three dimensions. Phys Rev E 57: 4323–4349

    Article  MATH  ADS  CAS  Google Scholar 

  • Katzav E, Adda-Bedia M, Derrida B (2007a) Fracture surfaces of heterogeneous materials: a 2D solvable model. EPL 78: 46006

    Article  ADS  Google Scholar 

  • Katzav E, Adda-Bedia M, Arias R (2007b) Theory of dynamic crack branching in brittle materials. Int J Fract 143: 245–271

    Article  Google Scholar 

  • Karma A, Kessler DA, Levine H (2001) Phase-field model of mode III dynamic fracture. Phys Rev Lett 87: 045501

    Article  PubMed  ADS  CAS  Google Scholar 

  • Karma A, Lobkovsky AE (2004) Unsteady crack motion and branching in a phase field model of brittle fracture. Phys Rev Lett 92: 245510

    Article  PubMed  ADS  Google Scholar 

  • Kobayashia R, Warren JA (2005) Modeling the formation and dynamics of polycrystals in 3D. Physica A 356: 127–132

    Article  ADS  Google Scholar 

  • Leblond JB (1989) Crack paths in plane situations— I. General form of the expansion of the stress instensity factors. Int J Solids Struct 25: 1311–1325

    Article  MATH  MathSciNet  Google Scholar 

  • Leblond JB (2003) Mécanique de la rupture fragile et ductile. Hermes Science Publications, Paris

    MATH  Google Scholar 

  • Marconi VI, Jagla EA (2005) Diffuse interface approach to brittle fracture. Phys Rev E 71: 036110

    Article  ADS  CAS  Google Scholar 

  • Marder M (1994) Instability of a crack in a heated strip. Phys Rev E 49: 51–54

    Article  ADS  Google Scholar 

  • Pham VB, Bahr HA, Bahr U, Balke H, Weiss HJ (2008) Global bifurcation criterion for oscillatory crack path instability. Phys Rev E 77: 066114

    Article  ADS  Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Ronsin O, Heslot F, Perrin B (1995) Experimental study of quasistatic brittle crack propagation. Phys Rev Lett 75: 2352–2355

    Article  PubMed  ADS  CAS  Google Scholar 

  • Ronsin O (1996) Etude expérimentale de la propagation de fractures dirigées en milieu fragile. PhD thesis, Université Paris VI

  • Ronsin O, Perrin B (1998) Dynamics of quasistatic directional crack growth. Phys Rev E 58: 7878–7886

    Article  ADS  CAS  Google Scholar 

  • Sakaue K, Yoneyama S, Kikuta H, Takashi M (2008) Evaluating crack tip stress field in a thin glass plate under thermal load. Eng Fract Mech 75: 1015–1026

    Article  Google Scholar 

  • Sasa S, Sekimoto K, Nakanishi H (1994) Oscillatory instability of crack propagations in quasi-static fracture. Phys Rev E 50: 1733–1736

    Article  ADS  Google Scholar 

  • Sendova M, Willis K (2003) Spiral and curved periodic crack patterns in sol-gel films. Appl Phys A 76: 957–959

    Article  ADS  CAS  Google Scholar 

  • Yang B, Ravi-Chandar K (2001) Crack path instabilities in a quenched glass plate. J Mech Phys Solids 49: 91–130

    Article  MATH  ADS  Google Scholar 

  • Yoneyama S, Sakaue K, Kikuta H, Takashi M (2006) Instantaneous phase-stepping photoelasticity for the study of crack growth behaviour in a quenched thin glass plate. Meas Sci Technol 17: 3309–3316

    Article  ADS  CAS  Google Scholar 

  • Yoneyama S, Sakaue K, Kikuta H, Takashi M (2008) Observation of stress field around an oscillating crack tip in a quenched thin glass plate. Exp Mech 48: 367–374

    Article  Google Scholar 

  • Yuse A, Sano M (1993) Transition between crack patterns in quenched glass plates. Nature 362: 329–331

    Article  ADS  Google Scholar 

  • Yuse A, Sano M (1997) Instabilities of quasi-static crack patterns in quenched glass plates. Physica D 108: 365–378

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Katzav.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corson, F., Adda-Bedia, M., Henry, H. et al. Thermal fracture as a framework for quasi-static crack propagation. Int J Fract 158, 1–14 (2009). https://doi.org/10.1007/s10704-009-9361-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-009-9361-4

Keywords

Navigation