Skip to main content
Log in

Dynamic crack propagation analysis of orthotropic media by the extended finite element method

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Dynamic crack propagation of composites is investigated in this paper based on the recent advances and development of orthotropic enrichment functions within the framework of partition of unity and the extended finite element method (XFEM). The method allows for analysis of the whole crack propagation pattern on an unaltered finite element mesh, defined independent of the existence of any predefined crack or its propagation path. A relatively simple, though efficient formulation is implemented, which consists of using a dynamic crack initiation toughness, a crack orientation along the maximum circumferential stress, and a simple equation to presume the crack speed. Dynamic stress intensity factors (DSIFs) are evaluated by means of the domain separation integral method. The governing elastodynamics equation is first transformed into a standard weak formulation and is then discretized into an XFEM system of time dependent equations, to be solved by the unconditionally stable Newmark time integration scheme. A number of benchmark and test problems are simulated and the results are compared with available reference results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aliabadia MH, Sollero P (1998) Crack growth analysis in homogeneous orthotropic laminates. Compos Sci Technol 58: 1697–1703

    Article  Google Scholar 

  • Areias PMA, Belytschko T (2005) Analysis of three-dimensional crack initiation and propagation using the extended finite element method. Int J Numer Meth Eng 63: 760–788

    Article  MATH  Google Scholar 

  • Asadpoure A, Mohammadi S (2007) Developing new enrichment functions for crack simulation in orthotropic media by the extended finite element method. Int J Numer Methods Eng 69: 25150–25172

    Article  Google Scholar 

  • Asadpoure A, Mohammadi S, Vafai A (2006a) Crack analysis in orthotropic media using the extended finite element method. Thin-Walled Struct 44(9): 1031–1038

    Article  Google Scholar 

  • Asadpoure A, Mohammadi S, Vafai A (2006b) Modeling crack in orthotropic media using a coupled finite element and partion of unity methods. Finite Elem Anal Des 42(13): 1165–1175

    Article  Google Scholar 

  • Atluri SN, Kobayashi AS, Nakagaki M (1975) A finite element program for fracture analysis of composite material. In: Fracture mechanics of composites. ASTM STP 593. American Society for Testing and Materials, Philadelphia, PA

  • Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Meth Eng 45: 601–620

    Article  MATH  MathSciNet  Google Scholar 

  • Belytschko T, Chen H (2004) Singular enrichment finite element method for elastodynamic crack propagation. Int J Numer Meth Eng 1(1): 1–15

    MATH  Google Scholar 

  • Belytschko T, Chen H, Xu J, Zi G (2003) Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment. Int J Numer Meth Eng 58: 1873–1905

    Article  MATH  Google Scholar 

  • Boone TJ, Wawrzynek PA, Ingraffea AR (1987) Finite element modeling of fracture propagation in orthotropic materials. Eng Fract Mech 26: 185–201

    Article  Google Scholar 

  • Camacho GT, Ortiz M (1996) Computational modeling of impact damage in brittle materials. Int J Solids Struct 33: 2899–2938

    Article  MATH  Google Scholar 

  • Chessa J, Belytschko T (2004) Arbitrary discontinuities in space–time finite elements by level sets and X-FEM. Int J Numer Methods Eng 61: 2595–2614

    Article  MATH  MathSciNet  Google Scholar 

  • Chessa J, Belytschko T (2006) A local space–time discontinuous finite element method. Comput Methods Appl Mech Eng 195: 1325–1343

    Article  MATH  MathSciNet  Google Scholar 

  • Combescure A, Gravouil A, Gregoire D, Rethore J (2008) X-FEM a good candidate for energy conservation in simulation of brittle dynamic crack propagation. Comput Methods Appl Mech Eng 197: 309–318

    Article  MATH  Google Scholar 

  • Dolbow J, Moës N, Belytschko T (2001) An extended finite element method for modeling crack growth with frictional contact. Comput Meth Appl Mech Eng 190: 6825–6846

    Article  MATH  Google Scholar 

  • Dongye C, Ting TCT (1989) Explicit expressions of Barnett- Lothe tensors and their associated tensors for orthotropic materials. Q Appl Math 47: 723–734

    MATH  MathSciNet  Google Scholar 

  • Forschi RO, Barret JD (1976) Stress intensity factors in anisotropic plates using singular isoparametric elements. Int J Numer Methods Eng 10: 1281–1287

    Article  Google Scholar 

  • Gao H, Klein P (1998) Numerical simulation of crack growth in an isotropic solid with randomized internal cohesive bonds. J Mech Phys Solids 42(6): 187–218

    Article  ADS  Google Scholar 

  • Gregoire D, Maigre H, Rethore J, Combescure A (2007) Dynamic crack propagation under mixed-mode loading—comparison between experiments and X-FEM simulations. Int J Solids Struct 44: 6517–6534

    Article  MATH  CAS  Google Scholar 

  • Kalthoff JF, Winkler S (1987) Failure mode transition at high rates of shear loading. In: International conference on impact loading and dynamic behavior of materials, vol 1, pp 185–195

  • Kanninen M, Popelar CH (1985) Advanced fracture mechanics. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Kim JH, Paulino GH (2003) The interaction integral for fracture of orthotropic functionally graded materials: evaluation of stress intensity factors. Int J Solids Struct 40: 3967–4001

    Article  MATH  Google Scholar 

  • Lekhnitskii SG (1963) Theory of an anisotropic elastic body. Holden-Day, San Francisco

    MATH  Google Scholar 

  • Maigre H, Rittel D (1993) Mixed-mode quantification for dynamic fracture initiation: application to the compact compression specimen. Int J Solids Struct 30(23): 3233–3244

    Article  Google Scholar 

  • Melenk JM, Babuška I (1996) The partition of unity finite element method: basic theory and applications. Comput Meth Appl Mech Eng 139: 289–314

    Article  MATH  Google Scholar 

  • Menouillard T, Réthoré J, Combescure A, Bung H (2006) Efficient explicit time stepping for the extended finite element method (X-FEM). Int J Numer Methods Eng 68(9): 911–939

    Article  MATH  Google Scholar 

  • Mergheim J, Kuhl E, Steinmann P (2005) A finite element method for the computational modeling of cohesive cracks. Int J Numer Meth Eng 63: 276–289

    Article  MATH  Google Scholar 

  • Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Meth Eng 46: 131–150

    Article  MATH  Google Scholar 

  • Mohammadi S (2008) Extended finite element method. Wiley/ Blackwell

  • Nishioka T, Alturi SN (1984) On the computation of mixed-mode k-factors for a dynamically propagating crack, using path-independent integrals. J Eng Fract Mech 20: 193–208

    Article  Google Scholar 

  • Nishioka T, Tokudome H, Kinoshita M (2001) Dynamic fracture-path prediction in impact fracture phenomena using moving finite element method based on Delaunay automatic mesh generation. Int J Solids Struct 38: 5273–5301

    Article  MATH  Google Scholar 

  • Nistor I, Pantale O, Caperaa S (2008) Numerical implementation of the eXtended Finite Element Method for dynamic crack analysis. Int J Adv Eng Softw 39: 573–587

    Article  Google Scholar 

  • Oliver J, Huespe AE, Pulido MDG, Samaniego E (2003) On the strong discontinuity approach in finite deformation settings. Int J Numer Methods Eng 56: 1051–1082

    Article  MATH  MathSciNet  Google Scholar 

  • Peerlings RHJ, de Borst R, Brekelmans WAM, Geers MGD (2002) Localisation issues in local and nonlocal continuum approaches to fracture. Eur J Mech A: Solids 21: 175–189

    Article  MATH  MathSciNet  Google Scholar 

  • Réthoré J, Gravouil A, Combescure A (2005b) A combined space–time extended finite element method. Int J Numer Methods Eng 64: 260–284

    Article  MATH  Google Scholar 

  • Sukumar N, Moës N, Moran B, Belytschko T (2000) Extended finite element method for three-dimensional crack modeling. Int J Numer Meth Eng 48: 1549–1570

    Article  MATH  Google Scholar 

  • Ventura G, Budyn E, Belytschko T (2003) Vector level sets for description of propagating cracks in finite elements. Int J Numer Methods Eng 58: 1571–1592

    Article  MATH  Google Scholar 

  • Wu KC (2000) Dynamic crack growth in anisotropic material. Int J Fract 106: 1–12

    Article  Google Scholar 

  • Xu XP, Needleman A (1994) Numerical simulation of fast crack growth in brittle solids. Int J Mech Phys Solids 42: 1397–1434

    Article  MATH  ADS  Google Scholar 

  • Zi G, Chen H, Xu J, Belytschko T (2005) The extended finite element method for dynamic fractures. Shock Vib 12: 9–23

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mohammadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Motamedi, D., Mohammadi, S. Dynamic crack propagation analysis of orthotropic media by the extended finite element method. Int J Fract 161, 21–39 (2010). https://doi.org/10.1007/s10704-009-9423-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-009-9423-7

Keywords

Navigation