Skip to main content
Log in

Criterion for initiation of cracks under mixed-mode I + III loading

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The initiation of crack growth under a combination of opening and anti-plane shearing mode loading is considered in this paper. It is shown that such cracks do not grow through a continuous evolution of the crack surface. Rather, an abrupt fragmentation or segmentation of the crack front is generated. Through experimental observations and a theoretical model, we postulate a relationship between the scale of the fragmentation and the mode mix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amestoy M, Leblond JB (1992) Crack paths in plane situations: II detailed form of the expansion of the stress intensity factors. Int J Solids Struct 29: 465–501

    Article  MATH  MathSciNet  Google Scholar 

  • Bonamy D, Ravi-Chandar K (2003) Interaction of stress waves with propagating cracks. Phys Rev Lett 91 (Art. No. 235502)

  • Bonamy D, Ravi-Chandar K (2005) Dynamic crack response to a localized shear pulse perturbation in brittle amorphous materials: on crack surface roughening. Int J Fract 134(2005): 1–22

    Article  CAS  Google Scholar 

  • Cooke ML, Pollard DD (1996) Fracture propagation paths under mixed mode loading within rectangular blocks of polymethyl methacrylate. J Geophys Res 101: 3387–3400

    Article  CAS  ADS  Google Scholar 

  • Davenport JCW, Smith DJ (1993) A study of superimposed fracture modes I, II and III on PMMA. Fatigue Fract Engng Mater Struct 16: 1125–1133

    Article  CAS  Google Scholar 

  • Gao H (1992) Three-dimensional slightly nonplanar cracks. J Appl Mech 59: 335–343

    Article  Google Scholar 

  • Gao H, Rice JR (1986) Shear stress intensity factors for a planar crack with slightly curved front. J Appl Mech 53: 774

    Article  MATH  Google Scholar 

  • Goldstein RV, Salganik RL (1974) Brittle fracture of solids with arbitrary cracks. Int J Frac 10: 507–523

    Article  Google Scholar 

  • Hodogdon JA, Sethna JP (1993) Derivation of a general 3-dimensional crack-propagation law—A generalization of the principle of local symmetry. Phys Rev B 47: 4831–4840

    Article  ADS  Google Scholar 

  • Hull D (1993) Tiltig cracks: the evolution of fracture surface topology in brittle solids. Int J Fract 62: 119–138

    Article  ADS  Google Scholar 

  • Hull D (1995) The effect of mixed mode I/III on crack evolution in brittle solids. Int J Fract 70: 59–79

    Article  Google Scholar 

  • Knauss WG (1970) An observation of crack propagation in anti-plane shear. Int J Frac 6: 183–187

    Google Scholar 

  • Lazarus V, Buchholz FG, Fulland M, Wiebesiek J (2008) Comparison of predictions by mode II or mode III criteria on crack front twisting in three or four point bending experiments. Int J Fract 153: 141–151

    Article  CAS  Google Scholar 

  • Lazarus V, Leblond JB (2001a) Crack front rotation and segmentation in mixed mode I + III or I + II + III. Part I: calculation of stress intensity factors. J Mech Phys Solids 49: 1399–1420

    Article  MATH  ADS  Google Scholar 

  • Lazarus V, Leblond JP (2001b) Crack front rotation and segmentation in mixed mode I + III or I + II + III. Part II: comparison with experiments. J Mech Phys Solids 49: 1421–1443

    Article  ADS  Google Scholar 

  • Li S, Mear ME (1998) Singularity-reduced integral equations for displacement discontinuities in three-dimensional linear elastic media. Int J Fract 93: 87–114

    Article  Google Scholar 

  • Li S, Mear ME, Xiao L (1998) Symmetric weak-form integral equation method for three dimensional fracture analysis. Comput Methods Appl Mech Engrg 151: 435–459

    Article  MATH  MathSciNet  Google Scholar 

  • Movchan AB, Gao H, Willis JR (1998) On perturbations of plane cracks. Int J Solids Struct 35: 3419–3453

    Article  MATH  MathSciNet  Google Scholar 

  • Murakami Y (1987) Stress intensity factors handbook. Pergamon, Oxford

    Google Scholar 

  • Pollard DD, Segall PE, Delaney PT (1982) Formation and interpretation of dilatant echelon cracks. Geol Soc Am Bull 93: 1291–1303

    Article  Google Scholar 

  • Raju IS, Newman JC (1977) Three-dimensional finite-element analysis of finite-thickness fracture specimens, Technical Report NASA TND-8414, NASA Langley Research Center, Hampton, VA 23665

  • Schroth JG, Hirth JP, Hoagland RG, Rosenfeld AR (1987) Combined mode-I-mode-III fracture of a high strength low alloy steel. Met Trans 18A: 1061–1072

    CAS  Google Scholar 

  • Smekal A (1953) Zum Bruchvogang bei sprodem Stoffrerhalten unter ein und mehrachsiegen Beanspringen. Osterr Ing Arch 7: 49–70

    Google Scholar 

  • Sommer E (1969) Formation of fracture ‘lances’ in glass. Eng Frac Mech 1: 539–546

    Article  Google Scholar 

  • Sukumar N, Moes N, Moran B, Belytschko T (2000) Extended finite element method for three-dimensional crack modeling. Int J Numer Methods Engrg 48: 1549–1570

    Article  MATH  Google Scholar 

  • Xu G, Bower AF, Ortiz M (1994) An analysis of non-planar crack growth under mixed mode loading. Int J Solids Struct 31: 2167–2193

    Article  MATH  Google Scholar 

  • Yates JR, Miller KJ (1989) Mixed-mode (I–III) fatigue thresholds in a forging steel. Fatigue Fract Eng Mater and Struct 12: 259–270

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Ravi-Chandar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, B., Mear, M.E. & Ravi-Chandar, K. Criterion for initiation of cracks under mixed-mode I + III loading. Int J Fract 165, 175–188 (2010). https://doi.org/10.1007/s10704-010-9476-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-010-9476-7

Keywords

Navigation