Skip to main content
Log in

Multiscale failure analysis of fiber reinforced concrete based on a discrete crack model

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

In this work the capabilities of an interface model to predict failure behavior of steel fiber reinforced cementitious composites (SFRCCs) are evaluated at both macro and mesoscale levels of observation. The interface model is based on a hyperbolic maximum strength criterion defined in terms of the normal and shear stress components acting on the joint plane. Pre-peak regime is considered linear elastic, while the post-peak behavior is formulated in terms of the fracture energy release under failure mode I and/or II. The well-known “Mixture Theory” is adopted for modeling the interactions between fibers and the surrounding cementitious composite. The effects of both the axial forces on the fibers induced by normal relative displacements, as well as the dowel action due to tangential relative displacements in the interfaces are considered in the formulation of the interaction mechanisms between fibers and cementitious composites. After describing the interface model, this work focuses on numerical analyses of SFRCC failure behavior. Firstly, the validation analysis of the interface model is performed at the constitutive level by comparing its numerical predictions against experimental results available in scientific literature. Then, the sensitivity of the interface theory for SFRCC regarding the variation of main parameters of the composite constituents is evaluated. Finally, the attention is focused on Finite Element (FE) analysis of SFRCC failure behavior at meso and macroscopic levels of observation. The results demonstrate the capabilities of the interface theory based on the Mixture Theory to reproduce the main features of failure behavior of SRFCC in terms of fiber content and involved fracture modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armero F, Linder C (2009) Numerical simulation of dynamic fracture using finite elements with embedded discontinuities. Int J Fract 160: 119

    Article  Google Scholar 

  • Barros J, Figueiras J (1999) Flexural behavior of SFRC: testing and modeling. ASCE J Mater Civil Eng 11(4): 331

    Article  Google Scholar 

  • Bazant Z, Oh B (1983) Crack band theory for fracture of concrete. Mater Struct 16: 155

    Google Scholar 

  • Bazant Z, Tabbara M, Kazemi M, Pijaudier-Cabot G (1990) Random particle model for fracture of aggregate or fiber composites. ASCE JEM 116: 1686

    Article  Google Scholar 

  • Belytschko T, Lu Y, Gu L (1995) Crack propagation by element-free Galerkin methods. Eng Fract Mech 51(2): 295

    Article  Google Scholar 

  • Bilal E-A (2007) Behavior of beams with dowel action. Eng Struct 29(6): 899

    Article  Google Scholar 

  • Buratti N, Mazzotti C, Savoia M (2011) Post-cracking behaviour of steel and macro-synthetic fibre-reinforced concretes. Constr Build Mater 25: 2713

    Article  Google Scholar 

  • Caggiano A, Etse G, Martinelli E (2011) Interface model for fracture behaviour of fiber-reinforced cementitious composites (FRCCs): theoretical formulation and applications. Eur J Environ Civil Eng 15(9): 1339

    Google Scholar 

  • Caggiano A, Etse G, Martinelli E (2012a) Zero-thickness interface model formulation for failure behavior of fiber-reinforced cementitious composites. Comput Struct 9899(0): 23

    Article  Google Scholar 

  • Caggiano A, Martinelli E, Faella C (2012) A fully-analytical approach for modelling the response of FRP plates bonded to a brittle substrate. Int J Solids Struct 49(17): 2291–2300

    Article  CAS  Google Scholar 

  • Caggiano A, Martinelli E (2012) A unified formulation for simulating the bond behaviour of fibers in cementitious materials. Mater Des. doi:10.1016/j.matdes.2012.05.003

  • Carol I, Prat P, Lopez C (1997) Normal/shear cracking model: applications to discrete crack analysis. ASCE JEM 123: 765

    Article  Google Scholar 

  • Carosio A, Willam K, Etse G (2000) On the consistency of viscoplastic formulations. Int J Solids Struct 37(48–50): 7349

    Article  Google Scholar 

  • Carpinteri A, Brighenti R (2010) Fracture behaviour of plain and fiber-reinforced concrete with different water content under mixed mode loading. Mater Des 31: 2032

    Article  CAS  Google Scholar 

  • Carpinteri A, Chiaia B, Nemati KM (1997) Complex fracture energy dissipation in concrete under different loading conditions. Mech Mater 26(2): 93

    Article  Google Scholar 

  • Comi C, Perego U (2001) Fracture energy based bi-dissipative damage model for concrete. Int J Solids Struct 38(36–37): 6427

    Article  Google Scholar 

  • de Borst R, Guitirrez M (1999) A unified framework for concrete damage and fracture models including size effects. Int J Fract 95: 261

    Article  CAS  Google Scholar 

  • de Borst R, Pamin J, Peerlings R, Sluys L (1995) On gradient-enhanced damage and plasticity models for failure in quasi-brittle and frictional materials. Comput Mech 17: 130

    Article  Google Scholar 

  • Dias-da Costa D, Alfaiate J, Sluys L, Jlio E (2010) A comparative study on the modelling of discontinuous fracture by means of enriched nodal and element techniques and interface elements. Int J Fract 161: 97

    Article  Google Scholar 

  • di Prisco M, Plizzari G, Vandewalle L (2009) Fibre reinforced concrete: new design perspectives. Mater Struct 42: 1261

    Article  Google Scholar 

  • Duan K, Hu X, Wittmann FH (2007) Size effect on specific fracture energy of concrete. Eng Fract Mech 74(1–2): 87

    Article  Google Scholar 

  • Dulacska H (1972) Dowel action of reinforcement crossing cracks in concrete. ACI Struct J 69(12): 754

    Google Scholar 

  • Dvorkin E, Cuitino A, Gioia G (1990) Finite elements with displacement embedded localization lines insensitive to mesh size and distortions. Int J Numer Methods Eng 30: 541

    Article  Google Scholar 

  • Etse G, Nieto M, Steinmann P (2003) A micropolar microplane theory. Int J Eng Sci 41(13–14): 1631

    Article  Google Scholar 

  • Etse G, Willam K (1994) A fracture energy-based constitutive formulation for inelastic behavior of plain concrete. ASCE-JEM 120: 1983

    Article  Google Scholar 

  • Faella C, Martinelli E, Nigro E (2009) Direct versus indirect method for identifying FRP-to-concrete interface relationships. J Compos Constr 13(3): 226

    Article  CAS  Google Scholar 

  • Fantilli A, Vallini P, Chiaia B (2011) Ductility of fiber-reinforced self-consolidating concrete under multi-axial compression. Cem Concr Compos 33: 520

    Article  CAS  Google Scholar 

  • Ferrara L, Meda A (2006) Relationships between fibre distribution, workability and the mechanical properties of SFRC applied to precast roof elements. Mater Struct 39: 411

    Article  Google Scholar 

  • Ferro G, Carpinteri A, Ventura G (2007) Minimum reinforcement in concrete structures and material/structural instability. Int J Fract 146: 213

    Article  Google Scholar 

  • Gettu R, Gardner D, Saldvar H, Barragn B (2005) Study of the distribution and orientation of fibers in SFRC specimens. Mater Struct 38: 31

    Article  Google Scholar 

  • Gopalaratnam VS, Gettu R (1995) On the characterization of flexural toughness in fiber reinforced concretes. Cem Concr Compos 17(3): 239

    Article  CAS  Google Scholar 

  • Hassanzadeh M (1990) Determination of fracture zone properties in mixed mode I and II. Eng Fract Mech 35(4–5): 845

    Article  Google Scholar 

  • Jirasek M, Bazant ZP (1994) Macroscopic fracture characteristics of random particle systems. Int J Fract 69: 201

    Article  Google Scholar 

  • Jirasek M (2000) Comparative study on finite elements with embedded discontinuities. Comput Methods Appl Mech Eng 188(1–3): 307

    Article  Google Scholar 

  • Kaczmarczyk L, Pearce CJ (2009) A corotational hybrid-Trefftz stress formulation for modelling cohesive cracks. Comput Methods Appl Mech Eng 198(15–16): 1298

    Article  Google Scholar 

  • Klein R (1989) Concrete and abstract Voronoi diagrams. Lecture notes in computer science. Springer, Berlin

    Book  Google Scholar 

  • Lee J, Fenves G (1998) Plastic-damage model for cyclic loading of concrete structures. ASCE JEM 124(8): 892

    Article  Google Scholar 

  • Li F, Li Z (2001) Continuum damage mechanics based modeling of fiber reinforced concrete in tension. Int J Solids Struct 38(5): 777

    Article  Google Scholar 

  • Liu C, Lovato M, Stout M, Huang Y (1997) Measurement of the fracture toughness of a fiber-reinforced composite using the Brazilian disk geometry. Int J Fract 87: 241

    Article  CAS  Google Scholar 

  • Liu Z, Menouillard T, Belytschko T (2011) An XFEM/spectral element method for dynamic crack propagation. Int J Fract 169: 183

    Article  CAS  Google Scholar 

  • Lopez C (1999) Microstructural analysis of concrete fracture using interface elements. Application to various concretes (in Spanish). Ph.D. thesis, Universitat Politecnica de Catalunya, ETSECCCP-UPC

  • Meschke G, Dumstorff P (2007) Energy-based modeling of cohesive and cohesionless cracks via X-FEM. Comput Methods Appl Mech Eng 196(21–24): 2338

    Article  Google Scholar 

  • Oliver J (1989) Consistent characteristic length for smeared cracking models. Int J Numer Methods Eng 28: 461

    Article  Google Scholar 

  • Oliver J, Huespe A, Pulido M, Chaves E (2002) From continuum mechanics to fracture mechanics: the strong discontinuity approach. Eng Fract Mech 69: 113

    Article  Google Scholar 

  • Oliver J, Linero D, Huespe A, Manzoli O (2008) Two-dimensional modeling of material failure in reinforced concrete by means of a continuum strong discontinuity approach. Comput Methods Appl Mech Eng 197(1): 332

    Article  Google Scholar 

  • Peerlings R, Massart T, Geers M (2004) A thermodynamically motivated implicit gradient damage framework and its application to brick masonry cracking. Comput Methods Appl Mech Eng 193(30–32): 3403

    Article  Google Scholar 

  • Rots J, Nauta P, Kusters G, Blaauwendraad J (1985) Smeared crack approach and fracture localization in concrete. Heron 30: 1

    Google Scholar 

  • Shah S (1990) Size-effect method for determining fracture energy and process zone size of concrete. Mater Struct 23: 461

    Article  Google Scholar 

  • Shannag J, Brincker R, Hansen W (1997) Pullout behavior of steel fibers from cement-based composites. Cem Concr Res 27: 925

    Article  CAS  Google Scholar 

  • Singh I, Mishra B, Pant M (2011) An enrichment based new criterion for the simulation of multiple interacting cracks using element free Galerkin method. Int J Fract 167: 157

    Article  Google Scholar 

  • Soroushian P, Lee C (1990) Distribution and orientation of fibers in steel fiber reinforced concrete. ACI Mater J 87(5): 433

    CAS  Google Scholar 

  • Trusdell C, Toupin R (1960) The classical field theories, the classical field theories, Handbuch der Physik, vol III/I. Springer, Berlin

  • Tlemat H, Pilakoutas K, Neocleous K (2006) Stress-strain characteristic of SFRC using recycled fibres. Mater Struct 39: 365

    Article  CAS  Google Scholar 

  • Vardoulakis I, Aifantis EC (1991) A gradient flow theory of plasticity for granular materials. Acta Mech 87: 197

    Article  Google Scholar 

  • van Mier J, van Vliet M, Wang T (2002) Fracture mechanisms in particle composites: statistical aspects in lattice type analysis. Mech Mater 34: 705

    Article  Google Scholar 

  • Vrech S, Etse G (2009) Gradient and fracture energy-based plasticity theory for quasi-brittle materials like concrete. Comput Methods Appl Mech Eng 199(1–4): 136

    Article  Google Scholar 

  • Wells G, Sluys L (2001) A new method for modelling cohesive cracks using finite elements. Int J Numer Methods Eng 50: 2667

    Article  Google Scholar 

  • Willam K, Bicanic N, Sture S (1984) Constitutive and computational aspects of strain-softening and localization in solids. In: Willam K (ed) Constitutive equations: micro, macro and computational aspects, ASME-WAM84, New Orleans, Symposium, vol G00274, New York, pp 233–252

  • Yip M, Li Z, Liao BS, Bolander J (2006) Irregular lattice models of fracture of multiphase particulate materials. Int J Fract 140: 113

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo Etse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Etse, G., Caggiano, A. & Vrech, S. Multiscale failure analysis of fiber reinforced concrete based on a discrete crack model. Int J Fract 178, 131–146 (2012). https://doi.org/10.1007/s10704-012-9733-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-012-9733-z

Keywords

Navigation