Skip to main content
Log in

Extended finite element method in computational fracture mechanics: a retrospective examination

  • Special Invited Article Celebrating IJF at 50
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

In this paper, we provide a retrospective examination of the developments and applications of the extended finite element method (X-FEM) in computational fracture mechanics. Our main attention is placed on the modeling of cracks (strong discontinuities) for quasistatic crack growth simulations in isotropic linear elastic continua. We provide a historical perspective on the development of the method, and highlight the most important advances and best practices as they relate to the formulation and numerical implementation of the X-FEM for fracture problems. Existing challenges in the modeling and simulation of dynamic fracture, damage phenomena, and capturing the transition from continuum-to-discontinuum are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Annavarapu C, Hautefeuille M, Dolbow JE (2014) A Nitsche stabilized finite element method for frictional sliding on embedded interfaces. Part I: single interface. Comput Methods Appl Mech Eng 268:417–436

    Article  Google Scholar 

  • Areias PMA, Belytschko T (2006) A comment on the article ‘A finite element method for simulation of strong and weak discontinuities in solid mechanics’ by A. Hansbo and P. Hansbo [Computer Methods in Applied Mechanics and Engineering 2004; 193:3523–3540]. Computer Methods Appl Mech Eng 195:1275–1276

  • Babuška I, Banerjee U (2012) Stable generalized finite element method (SGFEM). Comput Methods Appl Mech Eng 201:91–111

    Article  Google Scholar 

  • Babuška I, Melenk JM (1997) The partition of unity method. Int J Numer Methods Eng 40:727–758

    Article  Google Scholar 

  • Béchet E, Minnebo H, Moës N, Burgardt B (2005) Improved implementation and robustness study of the X-FEM for stress analysis around cracks. Int J Numer Methods Eng 64(8):1033–1056

    Article  Google Scholar 

  • Bellec J, Dolbow JE (2003) A note on enrichment functions for modeling crack nucleation. Commun Numer Methods Eng 19:921–932

    Article  Google Scholar 

  • Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45(5):601–620

    Article  Google Scholar 

  • Belytschko T, Gracie R, Ventura G (2009) A review of extended/generalized finite element methods for materials modeling. Modell Simul Mater Sci Eng 17(4):043001

    Article  Google Scholar 

  • Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996) Meshless methods: an overview and recent developments. Comput Methods Appl Mech Eng 139:3–47

    Article  Google Scholar 

  • Benthem JP (1977) State of stress at the vertex of a quarter-infinite crack in a half space. Int J Solids Struct 13:479–492

    Article  Google Scholar 

  • Benzley SE (1974) Representation of singularities with isoparametric finite elements. Int J Numer Methods Eng 8:537–545

    Article  Google Scholar 

  • Cano A, Moreno C (2015) A new method for numerical integration of singular functions on the plane. Numer Algorithms 68(3):547–568

    Article  Google Scholar 

  • Chessa J, Wang H, Belytschko T (2003) On the construction of blending elements for local partition of unity enriched finite elements. Int J Numer Methods Eng 57:1015–1038

    Article  Google Scholar 

  • Chevaugeon N, Moës N, Minnebo H (2013) Improved crack tip enrichment functions and integration for crack modelling using the eXtended Finite Element Method. Int J Multiscale Comput Eng 11(6):597–631

    Article  Google Scholar 

  • Colombo D, Massin P (2010) Fast and robust level set update for 3-D non planar X-FEM crack propagation modelling. Comput Methods Appl Mech Eng 200(25–28):2160–2180

    Google Scholar 

  • Comi C, Mariani S, Perego U (2007) An extended FE strategy for transition from continuum damage to mode I cohesive crack propagation. Int J Numer Anal Methods Geomech 31:213–238

    Article  Google Scholar 

  • Daux C, Moës N, Dolbow J, Sukumar N, Belytschko T (2000) Arbitrary branched and intersecting cracks with the extended finite element method. Int J Numer Methods Eng 48(12):1741–1760

    Article  Google Scholar 

  • Dolbow JE, Devan A (2004) Enrichment of enhanced assumed strain approximations for representing strong discontinuities: addressing volumetric incompressibility and the discontinuous patch test. Int J Numer Methods Eng 59:47–67

    Article  Google Scholar 

  • Duarte CA, Kim DJ (2008) Analysis and applications of a generalized finite element method with global–local enrichment functions. Comput Methods Appl Mech Eng 197:487–504

    Article  Google Scholar 

  • Duarte CAM, Babuška I, Oden JT (2000) Generalized finite element methods for three dimensional structural mechanics problems. Comput Struct 77(2):215–232

    Article  Google Scholar 

  • Duffy MG (1982) Quadrature over a pyramid or cube of integrands with a singularity at a vertex. SIAM J Numer Anal 19(6):1260–1262

    Article  Google Scholar 

  • Duflot M (2007) A study of the representation of cracks with level sets. Int J Numer Methods Eng 70(11):1261–1302

    Article  Google Scholar 

  • Duflot M, Bordas S (2008) A posteriori error estimation for extended finite elements by an extended global recovery. Int J Numer Methods Eng 76(8):1123–1138

    Article  Google Scholar 

  • Elguedj T, Gravouil A, Combescure A (2006) Appropriate extended functions for X-FEM simulation of plastic fracture mechanics. Comput Methods Appl Mech Eng 195(7–8):501–515

    Article  Google Scholar 

  • Erdogan F, Sih GC (1963) On the crack extension in plates under plane loading and transverse shear. J Basic Eng 85:519–527

    Article  Google Scholar 

  • Ferté G, Massin P, Moës N (2014) Interface problems with quadratic X-FEM: design of a stable multiplier space and error analysis. Int J Numer Methods Eng 100(11):834–870

    Article  Google Scholar 

  • Fix G, Gulati S, Wakoff GI (1973) On the use of singular functions with the finite element method. J Comput Phys 13:209–228

    Article  Google Scholar 

  • Fleming M, Chu YA, Moran B, Belytschko T (1997) Enriched element-free Galerkin methods for crack tip fields. Int J Numer Methods Eng 40:1483–1504

    Article  Google Scholar 

  • Fries TP, Belytschko T (2010) The extended/generalized finite element method: an overview of the method and its applications. Int J Numer Methods Eng 84(3):253–304

    Google Scholar 

  • Galenne E, Andrieux S, Ratier L (2007) A modal approach to linear fracture mechanics for dynamic loading at low frequency. J Sound Vib 299(1–2):283–297

    Article  Google Scholar 

  • Garzon J, O’Hara P, Duarte CA, Buttlar WG (2014) Improvements of explicit crack surface representation and update within the generalized finite element method with application to three-dimensional crack coalescence. Int J Numer Methods Eng 97(4):231–273

    Article  Google Scholar 

  • González-Albuixech VF, Giner E, Tarancón JE (2015) Modeling of the free border singularity in 3D cracks using XFEM and spherical harmonics. Revisita Internacional de Metodos Numericos para Calculo Y Diseno en Ingenieria 31:50–54

    Article  Google Scholar 

  • Gordeliy E, Peirce A (2015) Enrichment strategies and convergence properties of the XFEM for hydraulic fracture problems. Comput Methods Appl Mech Eng 283:474–502

    Article  Google Scholar 

  • Gosz M, Moran B (2002) An interaction energy integral method for computation of mixed-mode stress intensity factors along non-planar crack fronts in three dimensions. Eng Fract Mech 69(3):299–319

    Article  Google Scholar 

  • Gravouil A, Moës N, Belytschko T (2002) Non-planar 3D crack growth by the extended finite element and level sets–part II: level set update. Int J Numer Methods Eng 53(11):2569–2586

    Article  Google Scholar 

  • Griebel M, Schweitzer MA (2000) A particle-partition of unity method for the solution of elliptic, parabolic and hyperbolic PDEs. SIAM J Sci Comput 22(3):853–890

    Article  Google Scholar 

  • Gupta V, Duarte CA, Babuška I, Banerjee U (2015) Stable GFEM (SGFEM): improved conditioning and accuracy of GFEM/XFEM for three-dimensional fracture mechanics. Comput Methods Appl Mech Eng 289:355–386

    Article  Google Scholar 

  • Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput Methods Appl Mech Eng 193(33–35):3523–3540

    Article  Google Scholar 

  • Holdych DJ, Noble DR, Secor RB (2008) Quadrature rules for triangular and tetrahedral elements with generalized functions. Int J Numer Methods Eng 73(9):1310–1327

    Article  Google Scholar 

  • Huang R, Prévost J-H, Huang ZY, Suo Z (2003) Channel-cracking of thin films with the extended finite element method. Eng Fract Mech 70:2513–2526

    Article  Google Scholar 

  • Ji H, Dolbow JE (2004) On strategies for enforcing interfacial constraints and evaluating jump conditions with the extended finite element method. Int J Numer Methods Eng 61:2508–2535

    Article  Google Scholar 

  • Jirásek M (2000) Comparative study on finite elements with embedded discontinuities. Comput Methods Appl Mech Eng 188(1):307–330

    Article  Google Scholar 

  • Jirásek M, Belytschko T (2002) Computational resolution of strong discontinuities. In: Wang HA, Rammerstorfer FG, Eberhardsteiner J (eds) Proceedings of fifth world congress on computational mechanics. WCCM V, Vienna University of Technology, Austria

  • Karoui A, Mansouri K, Renard Y, Arfaoui M (2014) The eXtended finite element method for cracked hyperelastic materials: a convergence study. Int J Numer Methods Eng 100(3):222–242

    Article  Google Scholar 

  • Laborde P, Pommier J, Renard Y, Salaün M (2005) High-order extended finite element method for cracked domains. Int J Numer Methods Eng 64(8):354–381

    Article  Google Scholar 

  • Legrain G, Moës N, Huerta A (2008) Stability of incompressible formulations enriched with X-FEM. Comput Methods Appl Mech Eng 197:1835–1849

    Article  Google Scholar 

  • Legrain G, Moës N, Verron E (2005) Stress analysis around crack tips in finite strain problems using the extended finite element method. Int J Numer Methods Eng 63(2):290–314

    Article  Google Scholar 

  • Li FZ, Shih CF, Needleman A (1985) A comparison of methods for calculating energy release rates. Eng Fract Mech 21(2):405–421

    Article  Google Scholar 

  • Linder C, Armero F (2007) Finite elements with embedded strong discontinuities for the modeling of failure in solids. Int J Numer Methods Eng 72:1391–1433

    Article  Google Scholar 

  • Melenk JM, Babuška I (1996) The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng 139:289–314

    Article  Google Scholar 

  • Menouillard T, Réthoré J, Moës N, Combescure A, Bung H (2008) Mass lumping strategies for X-FEM explicit dynamics: application to crack propagation. Int J Numer Methods Eng 74:447–474

    Article  Google Scholar 

  • Mergheim J, Kuhl E, Steinmann P (2005) A finite element method for the computational modelling of cohesive cracks. Int J Numer Methods Eng 63:276–289

    Article  Google Scholar 

  • Mergheim J, Kuhl E, Steinmann P (2007) Towards the algorithmic treatment of 3D strong discontinuities. Commun Numer Methods Eng 23:97–108

    Article  Google Scholar 

  • Minnebo H (2012) Three-dimensional integration strategies of singular functions introduced by the XFEM in the LEFM. Int J Numer Methods Eng 92:1117–1138

    Article  Google Scholar 

  • Moës N, Cloirec M, Cartraud P, Remacle J-F (2003) A computational approach to handle complex microstructure geometries. Comput Methods Appl Mech Eng 192:3163–3177

    Article  Google Scholar 

  • Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):131–150

    Article  Google Scholar 

  • Moës N, Gravouil A, Belytschko T (2002) Non-planar 3D crack growth by the extended finite element and level sets–part I: mechanical model. Int J Numer Methods Eng 53(11):2549–2568

    Article  Google Scholar 

  • Moës N, Stolz C, Bernard P-E, Chevaugeon N (2011) A level set based model for damage growth: the thick level set approach. Int J Numer Methods Eng 86:358–380

    Article  Google Scholar 

  • Molino N, Bao Z, Fedkiw R (2004) A virtual node algorithm for changing mesh topology during simulation. ACM Trans Graph 23:285–392

    Article  Google Scholar 

  • Moran B, Shih CF (1987) Crack tip and associated domain integrals from momentum and energy balance. Eng Fract Mech 27(6):615–641

    Article  Google Scholar 

  • Mousavi SE, Sukumar N (2010a) Generalized Duffy transformation for integrating vertex singularities. Comput Mech 45(2–3):127–140

    Article  Google Scholar 

  • Mousavi SE, Sukumar N (2010b) Generalized Gaussian quadrature rules for discontinuities and crack singularities in the extended finite element method. Comput Methods Appl Mech Eng 199(49–52):3237–3249

    Article  Google Scholar 

  • Nakamura T, Parks DM (1989) Anti-symmetrical 3-D stress field near the crack front of a thin elastic plate. Int J Solids Struct 25(12):1411–1426

    Article  Google Scholar 

  • Nicaise S, Renard Y, Chahine E (2011) Optimal convergence analysis for the extended finite element method. Int J Numer Methods Eng 86:528–548

    Article  Google Scholar 

  • Pereira JPA, Kim D-J, Duarte CA (2011) A two-scale approach for the analysis of propagating three-dimensional fractures. Comput Mech 49(1):99–121

    Article  Google Scholar 

  • Réthoré J, Gravouil A, Combescure A (2005) An energy-conserving scheme for dynamic crack growth using the extended finite element method. Int J Numer Methods Eng 63(5):631–659

    Article  Google Scholar 

  • Richardson C, Hegemann J, Sifakis E, Hellrung J, Teran JM (2011) An xfem method for modeling geometrically elaborate crack propagation in brittle materials. Int J Numer Methods Eng 88(10):1042–1065

    Article  Google Scholar 

  • Rodenas JJ, González-Estrada OA, Tarancón JE, Fuenmayor FJ (2008) A recovery-type error estimator for the extended finite element method based on singular \(+\) smooth stress field splitting. Int J Numer Methods Eng 76:545–571

    Article  Google Scholar 

  • Schweitzer MA (2011) Stable enrichment and local preconditioning in the particle-partition of unity method. Numer Math 118:137–170

    Article  Google Scholar 

  • Schweitzer MA (2013) Variational mass lumping in the partition of unity method. SIAM J Sci Comput 35(2):A1073–A1097

    Article  Google Scholar 

  • Seabra MRR, Šuštarič P, Cesar de Sa JMA, Rodič T (2012) Damage driven crack initiation and propagation in ductile metals using XFEM. Comput Mech 52(1):161–179

    Article  Google Scholar 

  • Sethian JA (1999) Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Cambridge University Press, Cambridge

    Google Scholar 

  • Shi J, Chopp D, Lua J, Sukumar N, Belytschko T (2010) Abaqus implementation of extended finite element method using a level set representation for three-dimensional fatigue crack growth and life predictions. Eng Fract Mech 77(14):2840–2863

    Article  Google Scholar 

  • Shih CF, Moran B, Nakamura T (1986) Energy release rate along a three-dimensional crack front in a thermally stressed body. Int J Fract 30:79–102

    Google Scholar 

  • Siavelis M, Guiton M, Massin P, Moës N (2013) Large sliding contact along branched discontinuities with X-FEM. Comput Mech 52:201–219

    Article  Google Scholar 

  • Simo JC, Oliver J, Armero F (1993) An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids. Comput Mech 12:277–296

    Article  Google Scholar 

  • Simone A, Duarte CA, Van der Giessen E (2006) A generalized finite element method for polycrystals with discontinuous grain boundaries. Int J Numer Meth Eng 67:1122–1145

    Article  Google Scholar 

  • Simone A, Wells GN, Sluys LJ (2003) From continuous to discontinuous failure in a gradient-enhanced continuum damage model. Comput Methods Appl Mech Eng 192(41–42):4581–4607

    Article  Google Scholar 

  • Song J-H, Areias PMA, Belytschko T (2006) A method for dynamic crack and shear band propagation with phantom nodes. Int J Numer Methods Eng 67:868–893

    Article  Google Scholar 

  • Stolarska M, Chopp DL, Moës N, Belytschko T (2001) Modelling crack growth by level sets in the extended finite element method. Int J Numer Methods Eng 51(8):943–960

    Article  Google Scholar 

  • Strang G, Fix G (1973) An analysis of the finite element method. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Strouboulis T, Copps K, Babuška I (2001) The generalized finite element method. Comput Methods Appl Mech Eng 190(32–33):4081–4193

    Article  Google Scholar 

  • Sukumar N, Chopp DL, Béchet E, Moës N (2008) Three-dimensional non-planar crack growth by a coupled extended finite element and fast marching method. Int J Numer Meth Eng 76(5):727–748

    Article  Google Scholar 

  • Sukumar N, Chopp DL, Moës N, Belytschko T (2001) Modeling holes and inclusions by level sets in the extended finite-element method. Comput Methods Appl Mech Eng 190(46–47):6183–6200

    Article  Google Scholar 

  • Sukumar N, Chopp DL, Moran B (2003) Extended finite element method and fast marching method for three-dimensional fatigue crack propagation. Eng Fract Mech 70(1):29–48

    Article  Google Scholar 

  • Sukumar N, Moës N, Moran B, Belytschko T (2000) Extended finite element method for three-dimensional crack modelling. Int J Numer Methods Eng 48(11):1549–1570

    Article  Google Scholar 

  • Sukumar N, Prévost J-H (2003) Modeling quasi-static crack growth with the extended finite element method. Part I: computer implementation. Int J Solids Struct 40(26):7513–7537

    Article  Google Scholar 

  • Tamayo-Mas E, Rodriguez-Ferran A (2015) A medial-axis-based model for propagating cracks in a regularised bulk. Int J Numer Methods Eng 101:489–520

    Article  Google Scholar 

  • Ventura G (2006) On the elimination of quadrature subcells for discontinuous functions in the extended finite-element method. Int J Numer Meth Eng 66:761–795

    Article  Google Scholar 

  • Ventura G, Benvenuti E (2015) Equivalent polynomials for quadrature in Heaviside function enriched elements. Int J Numer Methods Eng 102(3–4):688–710

    Article  Google Scholar 

  • Wells GN, Sluys L (2001) A new method for modelling cohesive cracks using finite elements. Int J Numer Methods Eng 50(12):2667–2682

    Article  Google Scholar 

  • Yau JF, Wang SS, Corten HT (1980) A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity. J Appl Mech 47:335–341

    Article  Google Scholar 

  • Zi G, Belytschko T (2003) New crack-tip elements for XFEM and applications to cohesive cracks. Int J Numer Methods Eng 57:2221–2240

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the late Professor Ted Belytschko, with whom they coauthored many of the initial contributions on the X-FEM. His research ideas and technical writing have influenced our thinking and has helped us to shape this article. We also thank Professors David Chopp and Brian Moran, who introduced us to level set methods. N.S. is grateful for the research support of the National Science Foundation through contract Grant CMMI-1334783 to the University of California at Davis. J.E.D. is grateful to the support from Sandia National Laboratories and Idaho National Laboratory, to Duke University; N.M. gratefully acknowledges the support of the ERC advanced Grant XLS No. 291102.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Sukumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukumar, N., Dolbow, J.E. & Moës, N. Extended finite element method in computational fracture mechanics: a retrospective examination. Int J Fract 196, 189–206 (2015). https://doi.org/10.1007/s10704-015-0064-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-015-0064-8

Keywords

Navigation