Skip to main content
Log in

Crack propagation modelling in concrete using the scaled boundary finite element method with hybrid polygon–quadtree meshes

  • CompMech
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

This manuscript presents an extension of the recently-developed hybrid polygon–quadtree-based scaled boundary finite element method to model crack propagation in concrete. This hybrid approach combines the use of quadtree cells with arbitrary sided polygons for domain discretization. The scaled boundary finite element formulation does not distinguish between quadtree cells and arbitrary sided polygons in the mesh. A single formulation is applicable to all types of cells and polygons in the mesh. This eliminates the need to develop transitional elements to bridge the cells belonging to different levels in the quadtree hierarchy. Further to this, the use of arbitrary sided polygons facilitate the accurate discretization of curved boundaries that may result during crack propagation. The fracture process zone that is characteristic in concrete fracture is modelled using zero-thickness interface elements that are coupled to the scaled boundary finite element method using a shadow domain procedure. The scaled boundary finite element method can accurately model the asymptotic stress field in the vicinity of the crack tip with cohesive tractions. This leads to the accurate computation of the stress intensity factors, which is used to determine the condition for crack propagation and the resulting direction. Crack growth can be efficiently resolved using an efficient remeshing algorithm that employs a combination of quadtree decomposition functions and simple Booleans operations. The flexibility of the scaled boundary finite element method to be formulated on arbitrary sided polygons also result in a flexible remeshing algorithm for modelling crack propagation. The developed method is validated using three laboratory experiments of notched concrete beams subjected to different loading conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • A.C. Institute (1999) Aci-218-95: building code requirements for structural concrete (318–95) and commentary (318r–95). In: Technical report, Americal Concrete Institute (ACI)

  • Areias P, Rabczuk T, da Costa DD (2013a) Element-wise fracture algorithm based on rotation of edges. Eng Fract Mech 110:113

    Article  Google Scholar 

  • Areias P, Rabczuk T, Camanho PP (2013b) Initially rigid cohesive laws and fracture based on edge rotations. Comput Mech 52:931

    Article  Google Scholar 

  • Areias P, Rabczuk T, Camanho PP (2014) Finite strain fracture of 2D problems with injected anisotropic softening elements. Theor Appl Fract Mech 72:50

    Article  Google Scholar 

  • Areias P, Msekh MA, Rabczuk T (2016) Damage and fracture algorithm using the screened Poisson equation and local remeshing. Eng Fract Mech 158:116

    Article  Google Scholar 

  • Areias P, Rabczuk T (2016) Phase-field analysis of finite-strain plates and shells including element subdivision. Comput Methods Appl Mech Eng. doi:10.1016/j.cma.2016.01.020

  • Areias P, Rabczuk T (2013) Finite strain fracture of plates and shells with configurational forces and edge rotations. Int J Numer Methods Eng 94:1099

    Article  Google Scholar 

  • Arrea M, Ingraffea (1982) A Mixed mode crack propagation in mortar and concrete. In: Report 81-13, Cornell University, Department of Structural Engineering

  • Baz̆ant ZP, Li NY,(1995) Stability of cohesive crack model: Part 1–energy principles. J Appl Mech (ASME) 62:959

  • Bocca P, Carpinteri A, Valente S (1990) Size effects in the mixed mode crack propagation: softening and snap-back analysis. Eng Fract Mech 35:159

    Article  Google Scholar 

  • Camacho GT, Ortiz M (1996) Computational modelling of impact damage in brittle materials. Int J Solids Struct 33:2899

    Article  Google Scholar 

  • Carpinteri A, Valente S, Ferrara G, Melchiorri G (1993) Is mode II fracture energy a real material property? Comput Struct 48:397

    Article  Google Scholar 

  • Cendón DA, Gálvez JC, Elices M, Planas J (2000) Modelling the fracture of concrete under mixed loading. Int J Fract 103:293

    Article  Google Scholar 

  • de Borst R, Remmers JJC, Needleman A, Abellan MA (2004) Discrete vs smeared crack models for concrete fracture: bridging the gap. Int J Numer Anal Methods Geomech 28:583

    Article  Google Scholar 

  • Deeks AJ, Wolf JP (2002) A virtual work derivation of the scaled boundary finite-element method for elastostatics. Comput Mech 28:489

    Article  Google Scholar 

  • Gálvez JC, Elices M, Guinea GV, Planas J (1988) Mixed mode fracture of concrete under proportional and nonproportional loading. Int J Fract 94:267

    Article  Google Scholar 

  • Gupta AK (1978) A finite element for transition from a fine to a coarse grid. Int J Numer Methods Eng 12:35

    Article  Google Scholar 

  • Karihaloo BL, Abdalla HM, Xiao QZ (2006) Deterministic size effect in the strength of cracked concrete structures. Cem Concr Res 36:171

    Article  Google Scholar 

  • Karihaloo BL, Xiao QZ (2008) Asymptotic fields at the tip of a cohesive crack. Int J Fract 150:55

    Article  Google Scholar 

  • Khoei AR, Barani OR, Mofid M (2011) Modelling of dynamic cohesive fracture propagation in porous saturated media. Int J Numer Anal Methods Geomech 35:1160

    Article  Google Scholar 

  • Leon SE, Spring DW, Paulino GH (2014) Reduction in mesh bias for dynamic fracture using adaptive splitting of polygon finite elements. Int J Numer Methods Eng 100:555

  • Moës N, Belytschko T (2002) Extended finite element method for cohesive crack growth. Eng Fract Mech 69:813

    Article  Google Scholar 

  • Ngo D, Scordelis AC (1967) Finite element analysis of reinforced concrete beams. J Am Concr Inst 64:152

    Google Scholar 

  • Ooi ET, Song C, Tin-Loi F, Yang ZJ (2012) Polygon scaled boundary finite eelement for crack propagation modelling. Int J Numer Methods Eng 91:319

    Article  Google Scholar 

  • Ooi ET, Man H, Natarajan S, Song C (2015) Adaptation of quadtree meshes in the scaled boundary finite element method for crack propagation modeling. Eng Fract Mech 144:101

    Article  Google Scholar 

  • Ooi ET, Yang ZJ (2009) Modelling multiple cohesive crack propagation using a finite element-scaled boundary finite element coupled method. Eng Anal Bound Elem 33:915

    Article  Google Scholar 

  • Ooi ET, Yang ZJ (2010) A hybrid finite element-scaled boundary finite element method for crack propagation modelling. Comput Methods Appl Mech Eng 199:1178

    Article  Google Scholar 

  • Petersson PE (1981) Crack growth development of fracture zone in plain concrete and similar materials. Technical Report TVBM-1006, Lund Institute of Technology, Sweeden

  • Prasad MVKV, Krishamoorthy CS (2002) Computational model for discrete crack growth in plain and reinforced concrete. Comput Methods Appl Mech Eng 191:2699

    Article  Google Scholar 

  • Rabczuk T, Belytschko T (2004) Cracking particles: a simplified meshfree method for arbitrary evolving cracks. Int J Numer Methods Eng 61:2316

    Article  Google Scholar 

  • Rabczuk T, Zi G (2007) A meshfree method based on the local partition of unity for cohesive cracks. Comput Mech 39:743

    Article  Google Scholar 

  • Rashid Y (1968) Analysis of reinforced concrete pressure vessels. Nucl Eng Des 7:334

    Article  Google Scholar 

  • Remmers JJC, de Borst R, Needleman A (2003) A cohesive segments method for the simulation of crack growth. Comput Mech 31:69

    Article  Google Scholar 

  • Rice JR (1988) Elastic fracture mechanics concepts for interfacial cracks. J Appl Mech (ASME) 55:98

    Article  Google Scholar 

  • Saleh A, Aliabadi M (1996) Crack growth analysis in concrete using boundary element method. Eng Fract Mech 1:235

    Google Scholar 

  • Song C (2006) Analysis of singular stress fields at multi-material corners under thermal loading. Int J Numer Methods Eng 65:620

    Article  Google Scholar 

  • Song C, Tin-Loi F, Gao W (2010) A definition and evaluation procedure of generalized stress intensity factors at ccrack and multi-material wedges. Eng Fract Mech 77:2316

    Article  Google Scholar 

  • Song C, Wolf JP (1997) The scaled boundary finite-element method—alias consistent infinitesimal finite-element cell method—for elastodynamics. Comput Methods Appl Mech Eng 147:329

    Article  Google Scholar 

  • Spring DW, Leon SE, Paulino GH (2014) Unstructured polygonal meshes with adaptive refinement for the numerical simulation of dynamic cohesive fracture. Int J Fract 189:33

    Article  Google Scholar 

  • Sze KY, Wu D (2011) Transition finite element families for adaptive analysis of axisymmetric elaelastic problems. Finite Elem Anal Des 47:360

    Article  Google Scholar 

  • Tabarraei A, Sukumar N (2005) Adaptive computationls on conforming quadtree meshes. Finite Elem Anal Des 41:686

    Article  Google Scholar 

  • Xie M, Gerstle WH, Rahlkumar P (1995) Energy-based automatic mixed-mode crack-propagation modelling. ASCE J Eng Mech 121:914

    Article  Google Scholar 

  • Xu K, Lie ST, Cen Z (2004) Crack propagation analysis with Galerkin boundary element method. Int J Numer Anal Methods Geomech 28:421

    Article  Google Scholar 

  • Xu XP, Needleman A (1994) Nummethod simulations of fast crack growth in brittle solids. J Mech Phys Solids 42:1397

    Article  Google Scholar 

  • Yang ZJ, Chen JF (2004) Fully automatic modelling of cohesive discrete crack propagation in concrete beams using local arc-length methods. Int J Solids Struct 41:801

    Article  Google Scholar 

  • Yang ZJ, Deeks AJ (2007) Fully-automatic modeling of cohesive crack growth using a finite element-scaled boundary finite element method. Eng Fract Mech 73:1711

    Article  Google Scholar 

  • Yerry MA, Shephard MS (1983) A modified quadtree approach to finite element mesh generation. Comput Graph Appl IEEE 3:39

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Natarajan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ooi, E.T., Natarajan, S., Song, C. et al. Crack propagation modelling in concrete using the scaled boundary finite element method with hybrid polygon–quadtree meshes. Int J Fract 203, 135–157 (2017). https://doi.org/10.1007/s10704-016-0136-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-016-0136-4

Keywords

Navigation