Skip to main content

Advertisement

Log in

N2O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions

  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

The number of published N2O and NO emissions measurements is increasing steadily, providing additional information about driving factors of these emissions and allowing an improvement of statistical N-emission models. We summarized information from 1008 N2O and 189 NO emission measurements for agricultural fields, and 207 N2O and 210 NO measurements for soils under natural vegetation. The factors that significantly influence agricultural N2O emissions were N application rate, crop type, fertilizer type, soil organic C content, soil pH and texture, and those for NO emissions include N application rate, soil N content and climate. Compared to an earlier analysis the 20% increase in the number of N2O measurements for agriculture did not yield more insight or reduced uncertainty, because the representation of environmental and management conditions in agro-ecosystems did not improve, while for NO emissions the additional measurements in agricultural systems did yield a considerable improvement. N2O emissions from soils under natural vegetation are significantly influenced by vegetation type, soil organic C content, soil pH, bulk density and drainage, while vegetation type and soil C content are major factors for NO emissions. Statistical models of these factors were used to calculate global annual emissions from fertilized cropland (3.3 Tg N2O-N and 1.4 Tg NO-N) and grassland (0.8 Tg N2O-N and 0.4 Tg NO-N). Global emissions were not calculated for soils under natural vegetation due to lack of data for many vegetation types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alexander M. 1977. Introduction to Soil Microbiology, 2nd ed. Wiley and Sons, New York, 467 pp

  • Batjes N.H. (2002) Revised soil parameter estimates for the soil types of the world. Soil Use Manage 18: 232–235

    Article  Google Scholar 

  • Bobbink R., Hornung M., Roelofs J.G.M. (1998) The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. J. Ecol. 86: 717–738

    Article  CAS  Google Scholar 

  • Bouwman A.F. (1996) Direct emission of nitrous oxide from agricultural soils. Nutr. Cycl. Agroecosyst. 46: 53–70

    Article  CAS  Google Scholar 

  • Bouwman A.F., Boumans L.J.M. and Batjes N.H. (2002a). Emissions of N2O and NO from fertilized fields. Summary of available measurement data. Global Biogeochem. Cycles 16(4): 1058, doi: 10.1029/2001GB001811

    Article  CAS  Google Scholar 

  • Bouwman A.F., Boumans L.J.M. and Batjes N.H. (2002b). Modeling global annual N2O and NO emissions from fertilized fields. Global Biogeochem. Cycles 16(4): 1080, doi:10.1029/2001GB001812

    Article  CAS  Google Scholar 

  • Bouwman A.F., Fung I., Matthews E., John J. (1993) Global analysis of the potential for N2O production in natural soils. Global Biogeochem. Cycles 7: 557–597

    Article  CAS  Google Scholar 

  • Bouwman A.F., Van Drecht G., Van der Hoek K.W. (2005) Nitrogen surface balances in intensive agricultural production systems in different world regions for the period 1970–2030. Pedosphere 15(2): 137–155

    Google Scholar 

  • Bouwman A.F., Van Vuuren D.P., Derwent R.G., Posch M. (2002). A global analysis of acidification and eutrophication of terrestrial ecosystems. Water Air Soil Pollut. 141: 349–382

    Article  CAS  Google Scholar 

  • Brady N.C. (1990). The Nature and Properties of Soils, 10th edn. Macmillan Publishing Company, New York

    Google Scholar 

  • Bremner J.M. (1997) Sources of nitrous oxide in soils. Nutr. Cycl. Agroecosyst. 49: 7–16

    Article  CAS  Google Scholar 

  • Bronson K.F., Neue H.U., Singh U., Abao E.B. (1997) Automated chamber measurements of methane and nitrous oxide flux in a flooded rice soil: 2 Fallow period emissions. Soil Sci. Soc. Am. J. 61: 988–993

    Article  CAS  Google Scholar 

  • Bruinsma J.E. 2003. World Agriculture: Towards 2015/2030. An FAO Perspective. Earthscan, London, 432 pp

  • Brumme R. and Beese F. (1992). Effects of liming and nitrogen fertilization on emissions of CO2 and N2O from a temperate forest. J. Geophys. Res. 97: 12851–12858

    CAS  Google Scholar 

  • Collins W.J., Stevenson D.S., Johnson C.E. and Derwent R.G. (1997). Tropospheric ozone in a global-scale three-dimensional Lagrangian model and its response to NO x emission controls. J. Atmos. Chem. 26: 223–274

    Article  CAS  Google Scholar 

  • Crews T. (1999). The presence of nitrogen fixing legumes in terrestrial communities: Evolutionary vs ecological considerations. Biogeochemistry 46: 233–246

    CAS  Google Scholar 

  • Davidson E.A. (1991). Fluxes of nitrous oxide and nitric oxide from terrestrial ecosystems. In: Rogers J.E. and Whitman W.B. (eds) Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides and Halomethanes. American Society of Microbiology, Washington DC, pp. 219–235

    Google Scholar 

  • Davidson E.A. and Kingerlee W. (1997). A global inventory of nitric oxide emissions from soils. Nutr. Cycl. Agroecosyst. 48: 37–50

    Article  CAS  Google Scholar 

  • de Pauw E., Nachtergaele F.O., Antoine J., Fisher G. and Van Velthuizen H.T. (1996). A provisional world climatic resource inventory based on the length-of-growing-period concept. In: Batjes N.H., Kauffman J.H. and Spaargaren O.C. (eds) National Soil Reference Collections and Databases (NASREC). International Soil Reference and Information Centre (ISRIC), Wageningen, pp. 30–43

    Google Scholar 

  • FAO (2004). FAOSTAT Database Collections (http://www.apps.fao.org). Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Firestone M.K. and Davidson E.A. (1989). Microbiological basis for NO and N2O production and consumption in soils. In: Andreae M.O. and Schimel D.S. (eds) Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere. Wiley and Sons, Chichester, pp. 7–21

    Google Scholar 

  • Freibauer A. and Kaltschmitt M. (2003). Controls and models for estimating direct nitrous oxide emissions from temperate and sub-boreal agricultural mineral soils in Europe. Biogeochemistry 63: 93–115

    Article  CAS  Google Scholar 

  • Freney J.R. (1997). Emission of nitrous oxide from soils used for agriculture. Nutr. Cycl. Agroecosyst. 49: 1–6, (DOI: 10.1023/A:1009702832489)

    Article  CAS  Google Scholar 

  • Galloway J.N., Dentener F.J., Capone D.G., Boyer E.W., Howarth R.W., Seitzinger S.P., Asner G.P., Cleveland C.C., Green P.A., Holland E.A., Karl D.M., Michaels A.F., Porter J.H., Townsend A.R., Vörösmarty C.J. (2004). Nitrogen cycles: past, present, and future. Biogeochemistry 70: 153–226

    Article  CAS  Google Scholar 

  • IFA/IFDC/FAO (2003). Fertilizer Use by Crop. 5th edn, Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • IMAGE-team (2001). The IMAGE 2.2 implementation of the SRES scenarios. A comprehensive analysis of emissions, climate change and impacts in the 21st century. CD-ROM publication 481508018, National Institute for Public Health and the Environment, Bilthoven

    Google Scholar 

  • IPCC (1997). Guidelines for National Greenhouse Gas Inventories. Intergovernmental panel on Climate Change/Organization for Economic Cooperation and Development, Paris

    Google Scholar 

  • IPCC (2001). Third assessment report. Working Group I. Cambridge University Press, Cambridge

    Google Scholar 

  • Jordan C.F. 1985. Nutrient Cycling in Tropical Forest Ecosystems: Principles and their Application in Management and Conservation. Wiley, Chichester, 179 pp

  • Kaiser E.A. and Ruser R. (2000). Nitrous oxide emissions from arable soils in Germany. An evaluation of six long-term field experiments. J. Plant Nutr. Soil Sci. (Zeitschrift für Planzenernährung and Bodenkunde 163: 249–259

    Article  CAS  Google Scholar 

  • Kreileman G.J.J. and Bouwman A.F. (1994). Computing land use emissions of greenhouse gases. Water Air Soil Pollut. 76: 231–258

    Article  CAS  Google Scholar 

  • Li C. and Aber J. (2000). A process-oriented model of N2O and NO emissions from forest soils: I. Model development. J. Geophys. Res. 105: 4369–4384

    Article  CAS  Google Scholar 

  • Martikainen P.J. and de Boer W. (1993). Nitrous oxide production and nitrification in acidic soil from a Dutch coniferous forest. Soil Biol. Biochem. 25: 343–347

    Article  CAS  Google Scholar 

  • Meixner F.X., Fickinger T., Marufu L., Serca D., Nathaus F.J., Makina E., Mukurumbira L., Andreae M.O. (1997). Preliminary results on nitric oxide emission from a southern African savanna ecosystem. Nutr. Cycl. Agroecosyst. 48: 123–138

    Article  CAS  Google Scholar 

  • Mosier A.R., Duxbury J.M., Freney J.R., Heinemeier O. and Minami K. (1996). Nitrous oxide emissions from agricultural fields: assessment, measurement and mitigation. Plant Soil 181: 95–108

    Article  CAS  Google Scholar 

  • Mosier A.R., Kroeze C., Nevison C., Oenema O., Seitzinger S. and Van Cleemput O. (1998). Closing the global atmospheric N2O budget: nitrous oxide emissions through the agricultural nitrogen cycle. Nutr. Cycl. Agroecosyst. 52: 225–248

    Article  CAS  Google Scholar 

  • Nevison C. and Holland E. (1997). A reexamination of the impact of anthropogenically fixed nitrogen on atmopheric N2O and the stratospheric O3 layer. J. Geophys. Res. 102: 25519–25536

    Article  CAS  Google Scholar 

  • New M., Hulme M. and Jones P. (1999). Representing twentieth-century space-time climate variability. Part I: Development of a 1961–90 mean monthly terrestrial climatology. J. Climate 12: 829–856

    Article  Google Scholar 

  • Parton W.J., Mosier A.R., Ojima D.S., Valente D.W., Weier K. and Kulmala A.E. (1996). Generalized model for N2 and N2O production from nitrification and denitrification. Global Biogeochem. Cycles 10: 401–412

    Article  CAS  Google Scholar 

  • Payne R.W., Baird D.B., Gilmore A.R., Harding S.A., Lane P.W., Murray D.A., Soutar D.M., Thompson R., Todd A.D., Wilson G.T., Webster R. and Welham S.J. (2000). Genstat Release 4.2. Reference manual. Lawes Agricultural Trust (Rothamsted Experimental Station), Harpenden, Hertfordshire, UK

    Google Scholar 

  • Potter C.S., Riley R.H. and Klooster S.A. (1997). Simulation modeling of nitrogen trace gas emissions along an age gradient of tropical forest soils. Ecol. Model. 97(3): 179–196

    Article  CAS  Google Scholar 

  • Robertson G.P. (1989). Nitrification and denitrification in humid tropical ecosystems: potential controls on nitrogen retention. In: Proctor J. (eds) Mineral Nutrients in Tropical Forest and Savanna Ecosystems. Blackwell Scientific Publications, Oxford, pp. 55–69

    Google Scholar 

  • Saad A.L.O. and Conrad R. (1993). Temperature dependence of nitrification, denitrification and turnover of nitric oxide in different soils. Biol. Fertil. Soils 15: 21–27

    Article  CAS  Google Scholar 

  • Snedecor G.W. and Cochran W.G. 1980. Statistical Methods, 7th ed. The Iowa State University Press, Ames, Iowa, 507 pp

  • Tiedje J.M. (1988). Ecology of denitrification and dissimilatory nitrate reduction to ammonium. In: Zehnder A.J.B. (eds) Biology of Anaerobic Microorganisms. Wiley and Sons, New York, pp. 179–244

    Google Scholar 

  • Trenkel M.E. (1997). Improving Fertilizer Use Efficiency. Controlled-release and Stabilized Fertilizers in Agriculture. International Fertilizer Industry Association, Paris

    Google Scholar 

  • Veldkamp E. and Keller M. (1997). Fertilizer-induced nitric oxide emissions from agricultural soils. Nutr. Cycl. Agroecosyst. 48: 69–77

    Article  CAS  Google Scholar 

  • Verchot L.V., Davidson E.A., Cattanio J.H., Ackerman I.L., Erikson H.E. and Keller M. (1999). Land use change and biogeochemical controls of nitrogen oxide emissions from soils in eastern Amazonia. Global Biogeochem. Cycles 13: 31–46

    Article  CAS  Google Scholar 

  • Vitousek P.M. (1984). Litterfall, nutrient cycling and nutrient limitation in tropical forests. Ecology 65: 285–298

    Article  CAS  Google Scholar 

  • Vitousek P.M. and Sanford R.L. (1986). Nutrient cycling in moist tropical forest. Annu. Rev. Ecol. Systemat. 17: 137–167

    Article  Google Scholar 

  • Williams E.J. and Fehsenfeld F.C. (1991). Measurement of soil nitrogen oxide emissions at three North American ecosystems. J. Geophys. Res. 96: 1033–1042

    Article  Google Scholar 

  • Yienger J.J. and Levy II H. (1995). Empirical model of global soil-biogenic NO x emissions. Global Biogeochem. Cycles 100: 11447–11464

    CAS  Google Scholar 

Download references

Acknowledgments

Financial support was granted by the International Max Planck School for Earth Systems Modeling (Hamburg, Germany). The work of AFB is part of the project Integrated Terrestrial Modeling (S/550005/01/DD) of the Netherlands Environmental Assessment Agency. We thank Leo Boumans for his advice on the statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elke Stehfest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stehfest, E., Bouwman, L. N2O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions. Nutr Cycl Agroecosyst 74, 207–228 (2006). https://doi.org/10.1007/s10705-006-9000-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-006-9000-7

Keywords:

Navigation