Skip to main content
Log in

Dynamics of methane emission, active soil organic carbon and their relationships in wetland integrated rice-duck systems in Southern China

  • Original Article
  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

A randomized field experiment with three replicates was conducted in the subtropical region of China to investigate the effects of integrated rice-duck system (RD) on methane (CH4) emission, active soil organic carbon fractions and their relationships in 2007 and 2008, compared with conventional rice system (CK). Methane emissions were measured at 7–9 days intervals using a closed static chamber technique, and two fractions of active soil organic carbon, namely, dissolved organic carbon (DOC) and microbial biomass carbon (MBC), were analyzed simultaneously. Soil DOC and MBC in RD and CK had similarly distinct seasonal variation patterns within the 2 years. During this time DOC and MBC concentrations were low at the early growth stage, increased during panicle differentiation and heading period, and dropped during grain filling period of rice. CH4 emission fluxes from RD and CK followed a similar seasonal variation pattern both in 2007 and 2008. Two peaks of CH4 emission were observed, the first at the tillering stage, second at panicle differentiation and heading stage. The CH4 cumulative emission was reduced in RD by 19.3 and 19.6% in 2007 and 2008, respectively, compared with CK. Seasonal variation pattern of CH4 emission was regulated by soil DOC, MBC and soil temperature, all of which were significantly positively correlated with methane emissions. Improvement in soil redox status was the predominant reason for significant reduction of CH4 emission in RD. These results clearly indicate that integrated rice-duck system could be an effective mode of rice farming for decrease in methane emission in southern China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adhya TK, Rath AK, Gupta PK, Rao VR, Das SN, Parida KM, Parashar DC, Sethunathan N (1994) Methane emission from flooded rice fields under irrigated conditions. Biol Fertil Soils 18:245–248. doi:10.1007/BF00647675

    Article  Google Scholar 

  • Aerts R (2006) The freezer defrosting: global warming and litter decomposition rates in cold biomes. J Ecol 94:713–724

    Article  Google Scholar 

  • Aulakh MS, Wassmann R, Bueno C, Kreuzwieser J, Rennenberg H (2001) Characterization of root exudates at different growth stages of ten rice (Oryza sativa L.) cultivars. Plant Soil 3:139–148. doi:10.1055/s-2001-12905

    CAS  Google Scholar 

  • Bai Q, Gattinger A, Zelles L (2000) Characterization of microbial consortia in paddy rice soil by phospholipid analysis. Microb Ecol 39:273–281. doi:10.1007/s002480000020

    CAS  PubMed  Google Scholar 

  • Butterbach-Bahl K, Papen H, Rennenberg H (1997) Impact of gas transport through rice cultivars on methane emission from rice paddy fields. Plant Cell Environ 20:175–1183. doi:10.1111/j.1365-3040.1997.tb00693.x

    Article  Google Scholar 

  • Cai ZC (1997) A category for estimate of CH4 emission from rice paddy fields in China. Nutr Cycl Agro Ecosyst 49:171–179. doi:10.1023/A:1009729800707

    Article  CAS  Google Scholar 

  • Cleveland CC, Neff JC, Townsend AR, Hood E (2004) Composition, dynamics and fate of leached dissolved organic matter in terrestrial ecosystems: results from a decomposition experiment. Ecosystems 7:275–285. doi:10.1007/s10021-003-0236-7

    Article  CAS  Google Scholar 

  • Conrad R (1996) Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O and NO). Microbiol Rev 60:609–640

    CAS  PubMed  Google Scholar 

  • Crill PM, Bartlett KB, Harriss RC, Gorham E, Verry ES, Sebacher DI, Madzar L, Sanner W (1988) Methane flux from Minnesota peatlands. Glob Biogeochem Cycl 2:371–384

    Article  CAS  Google Scholar 

  • Das K, Baruah KK (2008) A comparison of growth and photosynthetic characteristics of two improved rice cultivars on methane emission from rainfed agroecosystem of northeast India. Agr Ecosyst Environ 124:105–113. doi:10.1016/j.agee.2007.09.007

    Article  CAS  Google Scholar 

  • Deng X, Liao XL, Huang H (2004) Studies on amount of methanogens in the rice-duck agroecosystem. Acta Ecol Sinica 24(8):1696–1700

    Google Scholar 

  • Ding WX, Cai ZC (2002) Effects of soil organic matter and exogenous organic materials on methane production in and emission from wetlands. Acta Ecol Sinica 22(10):1672–1677

    Google Scholar 

  • Freeman C, Fenner N, Ostle NJ, Kang H, Dowrick DJ, Reynolds B, Lock MA, Sleep D, Hughes S, Hudson J (2004) Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels. Nature 430:195–198. doi:10.1038/nature02707

    Google Scholar 

  • Fu ZQ, Huang H, Liao XL, Hu Y, Xie W, He BL (2008) Effect of ducks on CH4 emission from paddy soils and its mechanism research in the rice-duck ecosystem. Acta Ecol Sinica 28(5):2107–2114

    Article  CAS  Google Scholar 

  • Gao S, Tanji KK, Scardaci SC, Chow AT (2002) Comparison of redox indicators in a paddy soil during rice-growing season. Soil Sci Soc Am J 66:805–817

    Article  CAS  Google Scholar 

  • Hao XH, Liu SL, Wu JS, Hu RG, Tong CL, Su YY (2008) Effect of long-term application of inorganic fertilizer and organic amendments on soil organic matter and microbial biomass in three subtropical paddy soils. Nutr Cycl Agroecosyst 81:17–24. doi:10.1007/s10705-007-9145-z

    Article  Google Scholar 

  • Hargreaves PR, Brookes PC, Ross GJS, Poulton PR (2003) Evaluating soil microbial biomass carbon as an indicator of long-term environmental change. Soil Biol Biochem 35:401–407. doi:10.1016/S0038-0717(02)00291-2

    Article  CAS  Google Scholar 

  • Harrison AF, Taylor K, Scott A, Poskitt J, Benham D, Grace J, Chaplow J, Rowland P (2008) Potential effects of climate change on DOC release from three different soil types on the Northern Pennines UK: examination using field manipulation experiments. Glob Chang Biol 14:687–702. doi:10.1111/j.1365-2486.2007.01504.x

    Article  Google Scholar 

  • Haynes RJ (2005) Labile organic matter fractions as central components of the quality of agricultural soils: an overview. Adv Agron 85:221–268

    Article  CAS  Google Scholar 

  • Huang H, Yang ZH, Wang H, Hu ZY, Cheng SG, Cheng C (2003) A study on the pattern of methane emission in wetland rice-duck complex ecosystems. Acta Ecol Sinica 23(5):929–934

    Google Scholar 

  • Huang Y, Wang H, Huang H, Feng ZW, Yang ZH, Luo YC (2005) Characteristics of methane emission from wetland rice-duck complex ecosystem. Agric Ecosyst Environ 105:181–193. doi:10.1016/j.agee.2004.04.004

    Article  CAS  Google Scholar 

  • Hubei Provincial Bureau of Statistics (2008) Rural statistical yearbook 2007 of Hubei province. China Statistics Press, Beijing

    Google Scholar 

  • IPCC (2006) 2006 IPCC Guidelines for national greenhouse gas inventories—volume 4: agriculture, forestry and other land use. NGGIP Publications, Japan. http://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/4_Volume4/V4_10_Ch10_Livestock.pdf

  • Jean LM, Pierre R (2001) Production, oxidation, emission and consumption of methane by soils: a review. Eur J Soil Biol 37:25–50. doi:10.1016/S1164-5563(01)01067-6

    Article  Google Scholar 

  • Kalbitz K, Solinger S, Park JH, Michalzik B, Matzner E (2000) Controls on the dynamics of dissolved organic matter in soils: a review. Soil Sci 165:277–304

    Article  CAS  Google Scholar 

  • Krüger M, Frenzel P, Conrad R (2001) Microbial processes influencing methane emission from rice fields. Glob Chang Biol 7:49–63. doi:10.1046/j.1365-2486.2001.00395.x

    Article  Google Scholar 

  • Kumaraswamy S, Rath AK, Ramakrishnan B, Sethunathan N (2000) Wetland rice soils as sources and sinks of methane: a review and prospects for research. Biol Fert Soils 31:449–461. doi:10.1007/s003740000214

    Article  CAS  Google Scholar 

  • Li CF, Cao CG, Wang JP, Zhan M, Yuan WL, Ahmad S (2009) Nitrous oxide emissions from wetland rice—duck cultivation systems in Southern China. Arch Environ Contam Toxicol 56:21–29. doi:10.1007/s00244-008-9159-9

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Watanabe A, Neue HU, Huang C, Bueno CS (2000a) Methanogenic responses to exogenous substrates in anaerobic rice soils. Soil Biol Biochem 32:1683–1690. doi:10.1016/S0038-0717(00)00085-7

    Article  CAS  Google Scholar 

  • Lu Y, Wassmann R, Neue HU, Huang C (2000b) Dynamics of dissolved organic carbon and methane emissions in a flooded rice soil. Soil Sci Soc Am J 64:2011–2017

    Article  CAS  Google Scholar 

  • Lu Y, Watanabe A, Kimura M (2002a) Input and distribution of photosynthesized carbon in a flooded rice soil. Glob Biogeochem Cycl 16(4):1085. doi:10.1029/2002GB001864

    Article  Google Scholar 

  • Lu Y, Watanabe A, Kimura M (2002b) Contribution of plant-derived carbon to soil microbial biomass dynamics in a paddy rice microcosm. Biol Fertil Soils 36:136–142. doi:10.1007/s00374-002-0504-2

    Article  CAS  Google Scholar 

  • Lu Y, Watanabe A, Kimura M (2004) Contribution of plant photosynthates to dissolved organic carbon in a flooded rice soil. Biogeochemistry 71:1–15. doi:10.1007/s10533-005-3258-8

    Article  CAS  Google Scholar 

  • Luo GY, Xu GP, Wang YF, Wang SP, Lin XW, Hu YG, Zhang ZH, Chang XF, Duan JC, Su AL, Zhao YG (2009) Effects of grazing and experimental warming on DOC concentrations in the soil solution on the Qinghai-Tibet plateau. Soil Biol Biochem 41:2493–2500. doi:10.1016/j.soilbio.2009.09.006

    Article  CAS  Google Scholar 

  • Lutzow M, Kogel-Knabner I, Ekschmitt K, Flessa H, Guggenberger G, Matzner E, Marschner B (2007) SOM fractionation methods: relevance to functional pools and to stabilization mechanisms. Soil Biol Biochem 39:2183–2207. doi:10.1016/j.soilbio.2007.03.007

    Article  Google Scholar 

  • Mitra S, Wassmann R, Jain MC, Pathak H (2002) Properties of rice soils affecting methane production potentials: 2. Differences in topsoil and subsoil. Nutr Cycl Agroecosyst 64:183–191. doi:10.1023/A:1021175404418

    Article  CAS  Google Scholar 

  • Mitra S, Aulakh MS, Wassmann R, Olk DC (2005) Triggering of methane production in rice soils by root exudates: effects of soil properties and crop management. Soil Sci Soc Am J 69:563–570

    Article  CAS  Google Scholar 

  • Murase J, Matsui Y, Katoh M, Sugimoto A, Kimura M (2006) Incorporation of 13C-labeled rice-straw-derived carbon into microbial communities in submerged rice field soil and percolating water. Soil Biol Biochem 38:3483–3491. doi:10.1016/j.soilbio.2006.06.005

    Article  CAS  Google Scholar 

  • Nayak DR, Babu YJ, Adhya TK (2007) Long-term application of compost influences microbial biomass and enzyme activities in a tropical Aeric Endoaquept planted to rice under flooded condition. Soil Biol Biochem 39:1897–1906. doi:10.1016/j.soilbio.2007.02.003

    Article  CAS  Google Scholar 

  • Penning H, Conrad R (2007) Quantification of carbon flow from stable isotope fractionation in rice field soils with different organic matter content. Org Geochem 38:2058–2069. doi:10.1016/j.orggeochem.2007.08.004

    Article  CAS  Google Scholar 

  • Reichardt W, Mascarina G, Padre B, Doll J (1997) Microbial communities of continuously cropped irrigated rice fields. Appl Environ Microb 63:233–238

    CAS  Google Scholar 

  • Reiner W, Milkha SA (2000) The role of rice plants in regulating mechanisms of methane missions. Biol Fertil Soils 31:20–29. doi:10.1007/s003740050619

    Article  Google Scholar 

  • Robinson CH (2002) Controls on decomposition and soil nitrogen availability at high latitudes. Plant Soil 242:65–81. doi:10.1023/A:1019681606112

    Article  CAS  Google Scholar 

  • Singh JS, Singh S, Raghubanshi AS, Singh S, Kashyap AK (1996) Methane flux from rice/wheat agroecosystem as affected by crop phenology, fertilization and water level. Plant Soil 183:323–327. doi:10.1007/BF00011448

    Article  CAS  Google Scholar 

  • Song CC, Yang WY, Xu XF, Lou YJ, Zhang JB (2004) Dynamics of CO2 and CH4 concentration in the mire soil and its impact factors. Environ Sci 25(4):1–6

    Google Scholar 

  • Towprayoona S, Harvey NW, Jittasatra O, Kerdchuchean O (2000) Influence of rice variety and soil type on production and emission of methane from rice fields. Asian J Energy Environ 1:251–262

    Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass carbon. Soil Biol Biochem 19:703–704

    Article  CAS  Google Scholar 

  • Wang Y (2000) Studies on ecological benefits of planting and breeding model in rice fields. Acta Ecol Sinica 20(2):311–316

    Google Scholar 

  • Wang MX, Li J (2002) CH4 emission and oxidation in Chinese rice paddies. Nutr Cycl Agroecosyst 64:43–55

    Article  CAS  Google Scholar 

  • Wang ZP, DeLaune RD, Masscheleyn PH, Patrick WH Jr (1993) Soil redox and pH effects on methane production in a flooded rice soil. Soil Sci Soc Am J 57:382–385

    Article  CAS  Google Scholar 

  • Wang WJ, Dalal RC, Moody PW, Smith CJ (2003a) Relationships of soil respiration to microbial biomass, substrate availability and clay content. Soil Biol Biochem 35:273–284. doi:10.1016/S0038-0717(02)00274-2

    Article  CAS  Google Scholar 

  • Wang H, Huang H, Yang ZH, Liao XL (2003b) Integrated benefits of rice-duck complex ecosystem. Rural Eco Environ 19:23–26

    Google Scholar 

  • Wang JP, Cao CG, Jin H, Wang CF, Liu FH (2006) Effects of rice-duck farming on aquatic community in rice fields. Sci Agric Sinica 39(10):2001–2008

    Google Scholar 

  • Wassmann R, Neue HU, Bueno C, Lantin RS, Alberto MCR, Buendia LV, Bronson K, Papen H, Rennenberg H (1998) Methane production capacities of different rice soils derived from inherent and exogenous substrates. Plant Soil 203:227–237. doi:10.1023/A:1004357411814

    Article  CAS  Google Scholar 

  • Watanabe A, Machida N, Takahashi K, Kitamura H, Kimura M (2004) Flow of photosynthesized carbon from rice plants into the paddy soil ecosystem at different stages of rice growth. Plant Soil 258:151–160

    Article  CAS  Google Scholar 

  • Wei CF (2000) The effects of cultivation system on methane emission from winter flooded paddy fields in southwest area. Acta Pedol Sin 37(2):157–164

    CAS  Google Scholar 

  • Wright AL, Provin TL, Hons FM, Zuberer DA, White RH (2005) Dissolved organic C in compost-amended bermudagrass turf. Hortscience 40:830–835

    Google Scholar 

  • Xiang PA, Huang H, Huang M, Gan DX, Zhou Y, Fu ZQ (2006) Studies on technique of reducing methane emission in a rice-duck ecological system and the evaluation of its economic significance. Sci Agric Sinica 5(10):758–766

    CAS  Google Scholar 

  • Xu H, Cai ZC, Jia ZJ, Tsuruta H (2000) Effect of land management in winter crop season on CH4 emission during the following flooded and rice growing period. Nutr Cycl Agroecosyst 58:12–18. doi:10.1023/A:1009823425806

    Article  Google Scholar 

  • Yagi K, Tsuruta H, Minami K (1997) Possible options for mitigating methane emission from rice cultivation. Nutr Cycl Agroecosyst 49:213–220. doi:10.1023/A:1009743909716

    Article  CAS  Google Scholar 

  • Yao H, Conrad R, Wassmann R, Neue HU (1999) Effect of soil characteristics on sequential reduction and methane production in sixteen rice paddy soils from China, the Philippines, and Italy. Biogeochemistry 47:269–295

    Article  CAS  Google Scholar 

  • Yu SM, Ouyang YN, Zhang QY, Peng G, Xu DH, Jin QY (2005) Effects of rice-duck farming system on Oryza sativa growth and its yield. Chin Appl Ecol 16(7):1252–1256

    Google Scholar 

  • Zhan M, Cao CG, Wang JP, Dai GZ (2008) Analysis of diversity of soil microbial community of the wetland rice-duck and rice-fish complex ecosystem. Acta Pedologica Sinica 45(6):1179–1183

    Google Scholar 

  • Zheng YH, Deng GB, Lu GM (1997) Eco-economic benefits of rice-fish-duck complex ecosystem. Chin Appl Ecol 8(4):431–434

    Google Scholar 

  • Zheng XH, Wang MX, Wang YS, Shen RX, Li J (1998) Comparison of manual and automatic methods for measurement of methane emission from rice paddy fields. Adv Atmos Sci 15(4):569–579. doi:10.1007/s00376-998-0033-5

    Article  Google Scholar 

  • Zou JW, Huang Y, Jiang JY, Zheng XH, Sass RL (2005) A 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China: effects of water regime, crop residue, and fertilizer application. Glob Biogeochem Cycles 19:GB2021. doi:10.1029/2004GB002401

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by National Foundation of Key Science of China (No. 2006BA520A02). The authors would like to thank Mr. Zheng Liesheng for helping with the gas sample analyses, Professor Hu Ronggui for his suggestions in our research work. We also thank Professor Donald D. Tyler, Biosystem Engineering and Environmental Science Department of University of Tennessee USA, for his volunteer revision. We would like to extend our appreciation to the two anonymous reviewers for their painstaking revisions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cougui Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhan, M., Cao, C., Wang, J. et al. Dynamics of methane emission, active soil organic carbon and their relationships in wetland integrated rice-duck systems in Southern China. Nutr Cycl Agroecosyst 89, 1–13 (2011). https://doi.org/10.1007/s10705-010-9371-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-010-9371-7

Keywords

Navigation