Skip to main content
Log in

Identification of RAPD markers, in situ DNA content and structural chromosomal diversity in some legumes of the mangrove flora of Orissa

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Randomly amplified polymorphic DNA (RAPD) markers, karyotypes and 4C DNA content were analyzed in five legume mangroves belonging to the sub-family Papilinoideae (Dalbergia spinosa, Derris heterophylla and D. indica) and Caesalpinioideae (Caesalpinia crista, Cynometra ramiflora) of the family Fabaceae to establish the genetic variability and phylogenetic affinities. Somatic chromosome numbers were reported for the first time in D. spinosa (2 n =20 ), C. ramiflora (2n=26) and D. heterophylla (2n=24) with reconfirmation of the somatic chromosome number in D. indica (2n=22) and C. crista (2n=24). Significant intergeneric and interspecific variation of 4C DNA content was observed and that varied from 8.970 pg in C. ramiflora to 28.730 pg in D. indica. From the RAPD analysis, the dendogram showed clustering of Caesalpinia crista and Cynomitra ramiflora into one group (81.80). In the second groups Derris indica and Derris heterophylla were more similar (83.10) than Dalbergia spinosa (85.80). Species-specific DNA markers (900 bp) obtained in D. spinosa from OPN15; 700 & 2000 bp in C. ramiflora from OPN4 and 400 and 800 bp in D. heterophylla and 500 bp DNA fragment in C. cristaobtained from OPN-11 were found characteristic RAPD markers of these species. C. cristafound more closer affinity to C. ramiflora of the sub-family Caesalpinioideae [genetic distance (1–F)=0.847]. Derris indica showed closer genetic relation with D. heterophylla [genetic distance (1–F)=0.856] than D. spinosa[genetic distance (1–F)=0.876] where Derrisand Dalbergia belongs to the sub-family Papilionoideae. By employing these markers the present study has helped to resolve the relationship between the taxonomically diverse leguminous mangroves and study their ability to coexist with mangroves that would shed light on the evolution of mangroves from terrestrial species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Basak, U.C., A.B. Das & P. Das, 1998. In situ quantitation of DNA and karyotype analysis in four threatened mangrove species found in Bhitarkanika forest of Orissa. Cytobios 93: 147–155.

    Google Scholar 

  • Das, A.B., U.C. Basak & P. Das, 1994. Karyotype diversity in three species of Heritiera a common mangrove tree on the Orissa coast. Cytobios 80: 71–78.

    Google Scholar 

  • Das, A.B., U.C. Basak & P. Das, 1995a. Chromosome number and karyotype diversity in the Rhizophoraceae found in the mangrove forest of Orissa. Cytobios 81: 27–35.

    Google Scholar 

  • Das, A.B., U.C. Basak & P. Das, 1995b. Variation in nuclear DNA content and karyotype analysis in three species of Avicennia, a tree mangrove of coastal Orissa. Cytobios 80: 93–102.

    Google Scholar 

  • Das, A.B., U.C. Basak & P. Das, 1996. Karyotype analysis and 4C nuclear DNA estimation in three species of Acanthus, a mangrove associate from coastal Orissa. Cytobios 87: 151–159.

    Google Scholar 

  • Das, P., U.C. Basak & A.B. Das, 1997. Metabolic changes during rooting in pre-girdled stem cuttings and air-layers of Heritiera. Botanical Bulletin of Academia Sinica 38: 91–95.

    Google Scholar 

  • Das, A.B., A.K. Mukherjee & P. Das, 2001. Molecular phylogeny of Heritiera Aiton (Sterculiaceae), a tree man-grove: variations in RAPD markers and nuclear DNA content. Bot. J. Linn. Soc. 136: 221–229.

    Google Scholar 

  • Das, A.B. & R. Mallick, 1993. Karyotype diversity and interspecific 4C DNA variation in Bupleurum. Biol. Plan-tarum 35: 355–363.

    Google Scholar 

  • Fox, D.P., 1969. Some characteristics of the cold hydrolysis technique for staining plant tissues by the Feulgen reaction. J. Histochem. Cytochem. 17: 266–272.

    PubMed  Google Scholar 

  • Hogarth, P.J., 1999. The Biology of Mangroves. Oxford University Press, New York.

    Google Scholar 

  • Jena, S., P. Sahoo, S. Mohanty, A.B. Das & P. Das, 2002. Karyotype variation and cytophotometric estimation of In situ DNA content in some minor and associate man-groves of India. Cytologia 67: 15–24.

    Google Scholar 

  • Laurie, D.A. & M.D. Bennett, 1985. Nuclear DNA content in the genera Zea and Sorghum.Intergeneric, interspecific and interspecific variation. Heredity 55: 307–313.

    Google Scholar 

  • Martel, E., D. Denay, S. Siljakyakovlev, S. Brown & A. Sarr, 1997. Genome size variation and basic chromosome num-ber in pearl millet and fourteen related Pennisetum species. J. Hered. 88: 139–143.

    Google Scholar 

  • Parani, M., C. Srinivas Rao, N. Mathan, C.S. Anuratha, K.K. Narayanan & A. Parida, 1997. Molecular phylogeny of mangroves III.Parentage analysis of a Rhizophora hybrid using random ampli ed polymorphic DNA and restriction fragment length polymorphism markers. Aquat. Bot. 58: 165–172.

    Google Scholar 

  • Parani, M., M. Lakshmi, P.Senthikumar, R. Nivedita & A. Parida, 1998. Molecular phylogeny of mangrovesV. Anal-ysis of genome relationships in mangrove species using RAPD and RFLP markers. Theorit. Appl. Genet. 97: 617–625.

    Google Scholar 

  • Price, H.J., K. Bachman, K.L. Chambers & J. Riggs, 1980. Detection of interspecific variation in nuclear DNA content in Microseris douglasii. Bot. Gaz. 141: 195–198.

    Google Scholar 

  • Rayburn, A.L., J.A. Auger, E.A. Benzinger & A.G. Hepburn, 1989. Detection of interspecific DNA content variation in Zea mays L. by flow cytometry. J. Exp. Bot. 40: 1179–1183.

    Google Scholar 

  • Rohlf, F.J., 1993. NTSYS-pc. Numerical taxonomy and mul-tivariate analysis system. Version 1.80-Setauket, NY, Exe-ter Software.

  • Saghai-Maroof, M.A., K.M. Soliman, H.A. Jorgensen & H.A. Allard, 1984. Ribosomal DNA spacer length polymorphism in Barley. Mendelian inheritance, chromosomal locations and population dynamics. Proc. Nat. Acad. Sci. USA 81: 8014–8018.

    PubMed  Google Scholar 

  • Sharma, A.K. & A. Sharma, 1980. Chromosome Techniques: Theory and Practice, 3rd edn. Butterworths, London.

    Google Scholar 

  • Sneath, P.H.A., R. Sokal, 1973. Numerical Taxonomy. Free-man, San Francisco.

    Google Scholar 

  • Sokal, P.R. & F.J. Rohlf, 1973. Introduction to Biostatistics. Freeman, San Francisco.

    Google Scholar 

  • Tito, C.M., L.Poggio & C.A. Naranjo, 1991. Cytogenetic studies in the genus Zea 3. DNA content and heterochromatin in species and hybrids. Theoret. Appl. Genet. 83: 58–64.

    Google Scholar 

  • Tomlinson, P.B., 1986. The Botany of Mangroves. Cambridge University Press, Cambridge, UK, 419 pp.

    Google Scholar 

  • Untawale, A.G., 1985. Mangroves of India: present status and multiple use practices. UNDP/UNESCO Regional Man-grove Project, 67.

  • Van' t Hof, J., 1965. Relationships between mitotic cycle duration, S period duration and the average rate of DNA synthesis in the root meristem cells of several plants. Exp. Cell Res. 39: 48.

    Google Scholar 

  • Willams, J.G.K., A.R. Kulelik, J. Livak, A. Rafalski & S.V. Tingey, 1990. DNA polymorphism identi ed by arbitrary primers are useful as genetic markers. Nucl. Acid Res. 18: 6531–6535.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jena, S., Sahoo, P., Mohanty, S. et al. Identification of RAPD markers, in situ DNA content and structural chromosomal diversity in some legumes of the mangrove flora of Orissa. Genetica 122, 217–226 (2004). https://doi.org/10.1007/s10709-004-2040-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-004-2040-5

Navigation