Skip to main content

Advertisement

Log in

Evolutionary hyper-heuristics for tackling bi-objective 2D bin packing problems

  • Published:
Genetic Programming and Evolvable Machines Aims and scope Submit manuscript

Abstract

In this article, a multi-objective evolutionary framework to build selection hyper-heuristics for solving instances of the 2D bin packing problem is presented. The approach consists of a multi-objective evolutionary learning process, using specific tailored genetic operators, to produce sets of variable length rules representing hyper-heuristics. Each hyper-heuristic builds a solution to a given problem instance by sensing the state of the instance, and deciding which single heuristic to apply at each decision point. The hyper-heuristics consider the minimization of two conflicting objectives when building a solution: the number of bins used to accommodate the pieces and the total time required to do the job. The proposed framework integrates three well-studied multi-objective evolutionary algorithms to produce sets of Pareto-approximated hyper-heuristics: the Non-dominated Sorting Genetic Algorithm-II, the Strength Pareto Evolutionary Algorithm 2, and the Generalized Differential Evolution Algorithm 3. We conduct an extensive experimental analysis using a large set of 2D bin packing problem instances containing convex and non-convex irregular pieces, under many conditions, settings and using several performance metrics. The analysis assesses the robustness and flexibility of the proposed approach, providing encouraging results when compared against a set of well-known baseline single heuristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The set of problem instances used in this work can be found at http://paginas.fe.up.pt/~esicup/datasets Terashima1-Terashima2

  2. Available at: http://moeaframework.org/index.html.

References

  1. J. de Armas, G. Miranda, C. León, Hyperheuristic encoding scheme for multi-objective guillotine cutting problems. In: GECCO, pp. 1683–1690 (2011). doi:10.1145/2001576.2001803

  2. R. Bai, T.V. Woensel, G. Kendall, E.K. Burke, A new model and a hyper-heuristic approach for two-dimensional shelf space allocation. 4OR 11(1), 31–35 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Rishinhaldar Boominathanperumal, S. Rajkumar, Bin packing problems: Comparative analysis of heuristic techniques for different dimensions. Int. J. Pharm. Technol. 8(2), 13,305–13,319 (2016)

    Google Scholar 

  4. E.K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. zcan, R. Qu, Hyper-heuristics: a survey of the state of the art. J. Oper. Res. Soc. 64(12), 1695–1724 (2013). doi:10.1057/jors.2013.71

    Article  Google Scholar 

  5. E.K. Burke, E. Hart, G. Kendall, J. Newall, P. Ross, S. Schulenburg, Hyper-heuristics: An emerging direction in modern research technology. In: Handbook of Metaheuristics, pp. 457–474. Kluwer Academic Publishers (2003). doi:10.1007/0-306-48056-5_16

  6. E.K. Burke, M. Hyde, G. Kendall, J. Woodword, A genetic programming hyper-heuristic approach for evolving 2-d strip packing heuristics. IEEE Trans. Evolut. Comput. 14(6), 942–958 (2010)

    Article  Google Scholar 

  7. E.K. Burke, M.R. Hyde, G. Kendall, G. Ochoa, E. Özcan, J. Woodward, A Classification of Hyper-heuristic Approaches, International Series in Operations Research & Management Science, vol. 146, pp. 449–468. Springer US (2010). doi:10.1007/978-1-4419-1665-5_15

  8. E.K. Burke, M.R. Hyde, G. Kendall, J. Woodward, Automating the packing heuristic design process with genetic programming. Evol. Comput. 20(1), 63–89 (2012). doi:10.1162/EVCO_a_00044

    Article  Google Scholar 

  9. E.K. Burke, J.D.L. Silva, E. Soubeiga, Multi-Objective Hyper-Heuristic Approaches for Space Allocation and Timetabling, Operations Research/Computer Science Interfaces Series, vol. 32, chap. 6, pp. 129–158. Springer-Verlag (2005). doi:10.1007/0-387-25383-1_6

  10. C.A. Coello, D.A. Van Veldhuizen, G.B. Lamont (eds.), Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd edn. (Springer Verlag, Syracuse, New York, 2007)

    MATH  Google Scholar 

  11. A. Crispin, P. Clay, G. Taylor, T. Bayes, D. Reedman, Genetic algorithms applied to leather lay plan material utilization. Proc. Instit. Mech. Eng. Part B: J. Eng. Manuf. 217(12), 1753–1756 (2003). doi:10.1243/095440503772680677

    Article  Google Scholar 

  12. K. Deb, A. Pratap, S. Agrawal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  13. K.A. Dowsland, W.B. Dowsland, Solution approaches to irregular nesting problems. Eur. J. Oper. Res. 84(3), 506–521 (1995). doi:10.1016/0377-2217(95)00019-M

    Article  MATH  Google Scholar 

  14. H. Dyckhoff, A typology of cutting and packing problems. Eur. J. Oper. Res. 44(2), 145–159 (1990). doi:10.1016/0377-2217(90)90350-K

    Article  MathSciNet  MATH  Google Scholar 

  15. C. Fonseca, P. Fleming, Multiobjective optimization and multiple constraint handling in evolutionary algorithms. IEEE Trans. Man Syst. Cybern. Part A: Syst. Hum. 28(1), 26–37 (1998)

    Article  Google Scholar 

  16. M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (W. H. Freeman, New York, 1979)

    MATH  Google Scholar 

  17. J.C. Gomez, H. Terashima-Marín, Approximating Multi-Objective Hyper-Heuristics for Solving 2D Irregular Cutting Stock Problems, Lecture Notes in Computer Science, vol. 6438, chap. 30, pp. 349–360. Springer Berlin Heidelberg (2010). doi:10.1007/978-3-642-16773-7_30

  18. J.C. Gomez, H. Terashima-Marín, Building general hyper-heuristics for multi-objective cutting stock problems. Computación y Sistemas 16(3), 321–334 (2012)

    Google Scholar 

  19. E.D. Goodman, A.Y. Tetelbaum, V.M. Kureichik, A genetic algorithm approach to compaction, bin packing, and nesting problems. Tech. Rep. 940702, Case Center for Computer-Aided Engineering and Manufacturing, Michigan State University (1994)

  20. L. Hu-yao, H. Yuan-jun, NFP-based nesting algorithm for irregular shapes, in Symposium on Applied Computing, pp. 963–967. ACM Press, New York, NY, USA (2006). doi:10.1145/1141277.1141507

  21. S. Jiang, Y.S. Ong, J. Zhang, L. Feng, Consistencies and contradictions of performance metrics in multiobjective optimization. IEEE Trans. Cybern. 44(12), 2391–2404 (2014). doi:10.1109/TCYB.2014.2307319

    Article  Google Scholar 

  22. S. Kukkonen, J. Lampinen, GDE3: the third evolution step of generalized differential evolution, in IEEE Congress on Evolutionary Computation, pp. 443–450. IEEE (2005). doi:10.1109/CEC.2005.1554717

  23. A.C. Kumari, K. Srinivas, M. Gupta, Software module clustering using a hyper-heuristic based multi-objective genetic algorithm, in IEEE 3rd International Advance Computing Conference (IACC), pp. 813–818 (2013)

  24. Y.L. Li, Z.H. Zhan, Y.J. Gong, W.N. Chen, J. Zhang, Y. Li, Differential evolution with an evolution path: a deep evolutionary algorithm. IEEE Trans. Cybern. 45(9), 1798–1810 (2015). doi:10.1109/TCYB.2014.2360752

    Article  Google Scholar 

  25. A. Lodi, S. Martello, M. Monaci, Two-dimensional packing problems: a survey. Eur. J. Oper. Res. 141(2), 241–252 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. E. López-Camacho, An evolutionary framework for producing hyper-heuristics for solving the 2D irregular bin packing problem. Ph.D. thesis, Tecnológico de Monterrey (2012)

  27. E. López-Camacho, G. Ochoa, H. Terashima-Marín, E.K. Burke, An effective heuristic for the two-dimensional irregular bin packing problem. Ann. Oper. Res. 206(1), 241–264 (2013). doi:10.1007/s10479-013-1341-4

    Article  MathSciNet  MATH  Google Scholar 

  28. E. López-Camacho, H. Terashima-Marín, G. Ochoa, S.E. Conant-Pablos, Understanding the structure of bin packing problems through principal component analysis. Int. J. Prod. Econ. Special Issue on Cutting and Packing. pp. 488–499 (2013). doi:10.1016/j.ijpe.2013.04.041

  29. E. López-Camacho, H. Terashima-Marín, P. Ross, Defining a problem-state representation with data mining within a hyper-heuristic model which solves 2D irregular bin packing problems. Adv. Artif. Intell. IBERAMIA Lect. Notes Comput. Sci. 6433, 204–213 (2010). doi:10.1007/978-3-642-16952-6_21

    Google Scholar 

  30. E. López-Camacho, H. Terashima-Marin, P. Ross, G. Ochoa, A unified hyper-heuristic framework for solving bin packing problems. Expert Syst. Appl. 41(15), 6876–6889 (2014). doi:10.1016/j.eswa.2014.04.043

    Article  Google Scholar 

  31. M. Maashi, E. Özcan, G. Kendall, A multi-objective hyper-heuristic based on choice function. Expert Syst. Appl. 41(9), 4475–4493 (2014). doi:10.1016/j.eswa.2013.12.050

    Article  Google Scholar 

  32. A. Martinez-Sykora, R. Alvarez-Valdes, J.A. Bennell, R. Ruiz, J.M. Tamarit, Matheuristics for the irregular bin packing problem with free rotations. Eur. J. Oper. Soc. 258(2), 440–455 (2017)

    Article  MathSciNet  Google Scholar 

  33. H. Okano, A scanline-based algorithm for the 2D free-form bin packing problem. J. Oper. Res. Soc. Jpn. 45(2), 145–161 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. G.L. Pappa, G. Ochoa, M. Hyde, A.A. Freitas, J. Woodward, J. Swan, Contrasting meta-learning and hyper-heuristic research: the role of evolutionary algorithms. Genet. Program. Evol. Mach. 15(1), 3–35 (2014). doi:10.1007/s10710-013-9186-9

    Article  Google Scholar 

  35. A.F. Rafique, Multiobjective hyper heuristic scheme for system design and optimization. In: 9TH International Conference on Mathematical Problems in Engineering, Aerospace and Scince, ICNPAA 2012, pp. 764–769 (2012). doi:10.1063/1.4765574

  36. Z. Ren, H. Jiang, J. Xuan, Y. Hu, Z. Luo, New insights into diversification of hyper-heuristics. IEEE Trans. Cybern. 44(10), 1747–1761 (2014). doi:10.1109/TCYB.2013.2294185

    Article  Google Scholar 

  37. P. Ross, Hyper-heuristics. In: E.K. Burke, G. Kendall (eds.) Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques: Second Edition, pp. 611–638. Springer, New York (2014). doi:10.1007/978-1-4614-6940-7_20

  38. N.R. Sabar, M. Ayob, G. Kendall, R. Qu, A dynamic multiarmed bandit-gene expression programming hyper-heuristic for combinatorial optimization problems. IEEE Trans. Cybern. 45(2), 217–228 (2015). doi:10.1109/TCYB.2014.2323936

    Article  Google Scholar 

  39. K. Sim, E. Hart, B. Paechter, A lifelong learning hyper-heuristic method for bin packing. Evol. Comput. 23(1), 37–67 (2015)

    Article  Google Scholar 

  40. H. Terashima-Marín, P. Ross, C.J. Farías-Zárate, E. López-Camacho, M. Valenzuela-Rendón, Generalized hyper-heuristics for solving 2D regular and irregular packing problems. Ann. Oper. Res. 179(1), 369–392 (2010). doi:10.1007/s10479-008-0475-2

    Article  MathSciNet  MATH  Google Scholar 

  41. D.A. Van Veldhuizen, G.B. Lamont, Multiobjective evolutionary algorithm test suites, in Proceedings of the 1999 ACM symposium on Applied computing, pp. 351–357. ACM (1999). doi:10.1145/298151.298382

  42. J. Vázquez Rodríguez, S. Petrovic, A. Salhi, An investigation of hyper-heuristic search spaces, in IEEE Congress on Evolutionary Computation, pp. 3776–3783 (2007). doi:10.1109/CEC.2007.4424962

  43. J.A. Vázquez-Rodríguez, S. Petrovic, A mixture experiments multi-objective hyper-heuristic. J. Oper. Res. Soc. 64(11), 1664–1675 (2013). doi:10.1057/jors.2012.125

    Article  Google Scholar 

  44. N. Veerapen, D. Landa-Silva, X. Gandibleux, Hyper-heuristic as component of a multi-objective metaheuristic, in Proceedings of the Doctoral Symposium Engineering Stochastic Local Search Algorithms, no. TR/IRIDIA/2009-024 in IRIDIA, pp. 51–55 (2009)

  45. G. Wäscher, H. Hausner, H. Schumann, An improved typology of cutting and packing problems. Eur. J. Oper. Res. Special Issue on Cutting, Packing and Related Problems 183(3), 1109–1130 (2007)

    MATH  Google Scholar 

  46. H. Xia, J. Zhuang, D. Yu, Combining crowding estimation in objective and decision space with multiple selection and search strategies for multi-objective evolutionary optimization. IEEE Trans. Cybern. 44(3), 378–393 (2014). doi:10.1109/TCYB.2013.2256418

    Article  Google Scholar 

  47. E. Zitzler, S. Knzli, Indicator-based selection on multiobjective search. PPSN Lect. Notes Comput. Sci. 3242(1), 832–842 (2004)

    Article  Google Scholar 

  48. E. Zitzler, M. Laumanns, L. Thiele, SPEA2: Improving the strength pareto evolutionary algorithm for multiobjective optimization, in Evolutionary Methods for Design, Optimisation and Control with Application to Industrial Problems. Proceedings of the EUROGEN2001 Conference, Athens, Greece, September 19-21, 2001, pp. 95–100 (2002)

  49. E. Zitzler, L. Thiele, Multiobjective optimization using evolutionary algorithms: acomparative case study, Lecture Notes in Computer Science, vol. 1498, chap. 29, pp. 292–301. Springer Berlin Heidelberg (1998). doi:10.1007/BFb0056872

  50. E. Zitzler, L. Thiele, Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999). doi:10.1109/4235.797969

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported in part by CONACyT Basic Science Projects under Grants 99695 and 241461, ITESM Research Group with Strategic Focus in intelligent Systems, and by Universidad de Guanajuato Campus Irapuato-Salamanca.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Carlos Gomez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomez, J.C., Terashima-Marín, H. Evolutionary hyper-heuristics for tackling bi-objective 2D bin packing problems. Genet Program Evolvable Mach 19, 151–181 (2018). https://doi.org/10.1007/s10710-017-9301-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10710-017-9301-4

Keywords

Navigation