Skip to main content
Log in

On the first group of the chromatic cohomology of graphs

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

The Hochschild homology of the algebra of truncated polynomials \({{\mathcal {A}_m=\mathbb {Z}[x]/(x^m)}}\) is closely related to the Khovanov-type homology as shown by the second author. In the present paper we utilize this in the study of the first graph cohomology group of an arbitrary graph G with v vertices. The complete description of this group is given for m = 2, 3. For the algebra \({\mathcal {A}_2}\) we relate the chromatic graph cohomology with the Khovanov homology of adequate links. We describe the chromatic cohomology over the algebra \({\mathcal {A}_3}\) using the homology of a cell complex built on the graph G. In particular we prove that \({{H_{\mathcal {A}_{3}}^{1,2v-3}(G)}}\) can be isomorphic to any finite abelian group. Moreover, we give a characterization of graphs which have torsion in cohomology \({{H_{\mathcal {A}_{3}}^{1,2v-3}(G)}}\) and construct graphs which have the same (di)chromatic polynomial but different \({{H_{\mathcal {A}_{3}}^{1,2v-3}(G)}}\) .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anstee, R.P., Przytycki, J.H., Rolfsen, D.: Knot polynomials and generalized mutation. Topol. Appl. 32, 237–249 (1989). http://xxx.lanl.gov/abs/math.GT/0405382

    Google Scholar 

  2. Asaeda, M.M., Przytycki, J.H.: Khovanov homology: torsion and thickness. Advances in Topological Quantum Field Theory, pp. 135–166, Kluwer, Dordrecht (2004). http://www.arxiv.org/math.GT/0402402

  3. Asaeda, M.M., Przytycki, J.H., Sikora, A.S.: Categorification of the Kauffman bracket skein module of I-bundles over surfaces. Algeb. Geom. Topol. (AGT) 4, 1177–1210 (2004). http://front.math.ucdavis.edu/math.QA/0403527

  4. Bar-Natan, D.: On Khovanov’s categorification of the Jones polynomial. Alg. Geom. Topol. 2, 337–370 (2002). arXiv:math.QA/0201043

    Google Scholar 

  5. Bar-Natan, D.: e-mail, July 26 (2005)

  6. Bar-Natan, D.: Fast Khovanov homology computations. J. Knot Theory Ramif. 16(3), 243–255 (2007). arXiv:math.QA/0606318

    Google Scholar 

  7. Biggs, N.L.: Algebraic Graph Theory, p. 205. Cambridge University Press, Cambridge (1974) (second edition, 1993)

  8. Cartan, H., Eilenberg, S.: Homological Algebra. Princeton University Press (1956).

  9. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002). http://www.math.cornell.edu/~hatcher/AT/ATch3.pdf

  10. Helme-Guizon, L., Przytycki, J.H., Rong, Y.: Torsion in Graph Homology. Fundamenta Mathematicae 190, 139–177 (2006). http://arxiv.org/abs/math.GT/0507245

    Google Scholar 

  11. Helme-Guizon, L., Rong, Y.: A categorification for the chromatic polynomial. Algeb. Geom. Topol. (AGT) 5, 1365–1388 (2005). http://www.maths.warwick.ac.uk/agt/AGTVol5/agt-5-53.abs.html, arXiv:math.CO/0412264

  12. Helme-Guizon, L., Rong, Y.: Graph cohomologies from arbitrary algebras. http://front.math.ucdavis.edu/math.QA/0506023

  13. Hochschild G.: On the cohomology groups of an associative algebra. Ann. Math. 46, 58–67 (1945)

    Article  MathSciNet  Google Scholar 

  14. Khovanov, M.: A categorification of the Jones polynomial. Duke Math. J. 101(3), 359–426 (2000). http://xxx.lanl.gov/abs/math.QA/9908171

  15. Khovanov, M.: Categorifications of the colored Jones polynomial. J. Knot. Theory Ramif. 14(1), (2005). http://arxiv.org/abs/math.QA/0302060

  16. Khovanov, M., Rozansky, L.: Matrix factorizations and link homology. Fund. Math. 199(1), 1–91 (2008). http://arxiv.org/abs/math.QA/0401268

  17. Khovanov, M., Rozansky, L.: Matrix factorizations and link homology II. Geom. Topol. (to appear). http://arxiv.org/abs/math.QA/0505056

  18. Loday, J-L.: Cyclic Homology, Grund. Math. Wissen. Band 301. Springer-Verlag, Berlin (1992) (second edition, 1998)

  19. Przytycki, J.H.: KNOTS: From Combinatorics of Knot Diagrams to the Combinatorial Topology Based on Knots, p. 650. Cambridge University Press, Cambridge (2009) (accepted for publication).Chapter V, http://arxiv.org/abs/math.GT/0601227, Chapter IX, http://arxiv.org/abs/math.GT/0602264, Chapter X, http://arxiv.org/abs/math.GT/0512630

  20. Przytycki J.H.: When the theories meet: Khovanov homology as Hochschild homology of links. arXiv:math.GT/0509334

  21. Shumakovitch, A.: Torsion of the Khovanov homology. http://arxiv.org/abs/math.GT/0405474

  22. Stosic, M.: Categorification of the dichromatic polynomial for graphs. J. Knot Theory Ramif. (2007) (to appear). http://arxiv.org/abs/math.GT/0504239

  23. Tutte W.T.: Codichromatic graphs. J. Combin. Theory (B) 16, 168–174 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  24. Viro, O.: Remarks on definition of Khovanov homology. http://arxiv.org/abs/math.GT/0202199

  25. Viro O.: Khovanov homology, its definitions and ramifications. Fund. Math. 184, 317–342 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Józef H. Przytycki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pabiniak, M.D., Przytycki, J.H. & Sazdanović, R. On the first group of the chromatic cohomology of graphs. Geom Dedicata 140, 19–48 (2009). https://doi.org/10.1007/s10711-008-9307-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-008-9307-4

Keywords

Navigation