Skip to main content
Log in

Galois points for a plane curve in arbitrary characteristic

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

In 1996, Hisao Yoshihara introduced a new notion in algebraic geometry: a Galois point for a plane curve is a point from which the projection induces a Galois extension of function fields. Yoshihara has established various new approaches to algebraic geometry by using Galois point or generalized notions of it. It is an interesting problem to determine the distribution of Galois points for a given plane curve. In this paper, we survey recent results related to this problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arbarello, E., Cornalba, M., Griffiths, P.A., Harris, J.: Geometry of Algebraic Curves, vol. I. Grundlehren der Mathematischen Wissenschaften, vol. 267. Springer-Verlag, New York (1985)

  2. Chang H.C.: On plane algebraic curves. Chin. J. Math. 6, 185–189 (1978)

    MATH  Google Scholar 

  3. Cukierman F.: Monodromy of projections, 15th School of Algebra. Math. Contemp. 16, 9–30 (1999)

    MATH  MathSciNet  Google Scholar 

  4. Duyaguit C., Miura K.: On the number of Galois points for plane curves of prime degree. Nihonkai Math. J. 14, 55–59 (2003)

    MATH  MathSciNet  Google Scholar 

  5. Duyaguit C., Yoshihara H.: Galois lines for normal elliptic curves. Algebra Colloq. 12, 205–212 (2005)

    MATH  MathSciNet  Google Scholar 

  6. Fukasawa S.: Galois points on quartic curves in characteristic 3. Nihonkai Math. J. 17, 103–110 (2006)

    MATH  MathSciNet  Google Scholar 

  7. Fukasawa S.: On the number of Galois points for a plane curve in positive characteristic, II. Geom. Dedicata 127, 131–137 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fukasawa S.: On the number of Galois points for a plane curve in positive characteristic. Commun. Algebra 36, 29–36 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fukasawa, S.: Classification of plane curves with infinitely many Galois points (preprint)

  10. Fukasawa, S., Hasegawa, T.: Singular plane curves with infinitely many Galois points (preprint)

  11. Hefez A.: Non-reflexive curves. Compos. Math. 69, 3–35 (1989)

    MATH  MathSciNet  Google Scholar 

  12. Hefez, A., Kleiman, S.: Notes on the duality of projective varieties. In: Geometry Today (Rome, 1984). Progress in Mathematics, vol. 60, pp. 143–183. Birkhäuser, Boston (1985)

  13. Homma M.: A souped-up version of Pardini’s theorem and its application to funny curves. Compos. Math. 71, 295–302 (1989)

    MATH  MathSciNet  Google Scholar 

  14. Homma M.: Galois points for a Hermitian curve. Commun. Algebra 34, 4503–4511 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Homma M.: The Galois group of a projection of a Hermitian curve. Int. J. Algebra 1, 563–585 (2007)

    MATH  MathSciNet  Google Scholar 

  16. Iitaka S.: Algebraic Geometry. Graduate Texts in Mathematics, vol. 76. , Springer-Verlag (1982)

    MATH  Google Scholar 

  17. Kanazawa M., Takahashi T., Yoshihara H.: The group generated by automorphisms belonging to Galois points of the quartic surface. Nihonkai Math. J. 12, 89–99 (2001)

    MATH  MathSciNet  Google Scholar 

  18. Kleiman, S.L.: Tangency and duality. In: Proceedings of the 1984 Vancouver Conference in Algebraic Geometry, CMS Conference Proceedings, vol. 6, pp. 163–226. American Mathematical Society, Providence (1986)

  19. Kleiman, S.L.: Multiple tangents of smooth plane curves (after Kaji). Algebraic Geometry: Sundance 1988. Contemporary Mathematics, vol. 116, pp. 71–84. American Mathematical Society, Providence (1991)

  20. Miranda, R.: Algebraic Curves and Riemann Surfaces. Graduate Studies in Mathematics, vol. 5. American Mathematical Society, Providence (1995)

  21. Miura K.: Field theory for function fields of singular plane quartic curves. Bull. Aust. Math. Soc. 62, 193–204 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  22. Miura K.: Field theory for function fields of plane quintic curves. Algebra Colloq. 9, 303–312 (2002)

    MATH  MathSciNet  Google Scholar 

  23. Miura K.: Galois points on singular plane quartic curves. J. Algebra 287, 283–293 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Miura K.: Galois points for plane curves and Cremona transformations. J. Algebra 320, 987–995 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  25. Miura, K.: On dihedral Galois coverings arising from Lissajous’s curves. J. Geom. (to appear)

  26. Miura K., Yoshihara H.: Field theory for function fields of plane quartic curves. J. Algebra 226, 283–294 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  27. Miura K., Yoshihara H.: Field theory for the function field of the quintic Fermat curve. Commun. Algebra 28, 1979–1988 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  28. Namba M.: Geometry of Projective Algebraic Curves. Dekker, New York (1984)

    MATH  Google Scholar 

  29. Pardini R.: Some remarks on plane curves over fields of finite characteristic. Compos. Math. 60, 3–17 (1986)

    MATH  MathSciNet  Google Scholar 

  30. Pirola G., Schlesinger E.: Monodromy of projective curves. J. Algebraic Geom. 14, 623–642 (2005)

    MATH  MathSciNet  Google Scholar 

  31. Sakai H.: Infinitesimal deformation of Galois covering space and its application to Galois closure curve. Nihonkai Math. J. 14, 133–177 (2003)

    MATH  MathSciNet  Google Scholar 

  32. Stichtenoth H.: Algebraic Function Fields and Codes. Universitext. Springer-Verlag, Berlin (1993)

    Google Scholar 

  33. Stöhr K.O., Voloch J.F.: Weierstrass points and curves over finite fields. Proc. Lond. Math. Soc. 52, 1–19 (1986)

    Article  MATH  Google Scholar 

  34. Takahashi T.: Minimal splitting surface determined by a projection of a smooth quartic surface. Algebra Colloq. 9, 107–115 (2002)

    MATH  MathSciNet  Google Scholar 

  35. Takahashi T.: Galois points on normal quartic surfaces. Osaka J. Math. 39, 647–663 (2002)

    MATH  MathSciNet  Google Scholar 

  36. Takahashi T.: Non-smooth Galois point on a quintic curve with one singular point. Nihonkai Math. J. 16, 57–66 (2005)

    MATH  MathSciNet  Google Scholar 

  37. Watanabe S.: The genera of Galois closure curves for plane quartic curve. Hiroshima Math. J. 38, 125–134 (2008)

    MATH  MathSciNet  Google Scholar 

  38. Yoshihara H.: Degree of irrationality of an algebraic surface. J. Algebra 167, 634–640 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  39. Yoshihara H.: Galois points on quartic surfaces. J. Math. Soc. Jpn. 53, 731–743 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  40. Yoshihara H.: Function field theory of plane curves by dual curves. J. Algebra 239, 340–355 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  41. Yoshihara H.: Galois points for smooth hypersurfaces. J. Algebra 264, 520–534 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  42. Yoshihara H.: Families of Galois closure curves for plane quartic curves. J. Math. Kyoto Univ. 43, 651–659 (2003)

    MATH  MathSciNet  Google Scholar 

  43. Yoshihara H.: Galois lines for space curves. Algebra Colloq. 13, 455–469 (2006)

    MATH  MathSciNet  Google Scholar 

  44. Yoshihara H.: Galois embedding of algebraic variety and its application to abelian surface. Rend. Sem. Mat. Univ. Padova 117, 69–85 (2007)

    MATH  MathSciNet  Google Scholar 

  45. Yoshihara H.: Galois points for plane rational curves. Far East J. Math. Sci. 25, 273–284 (2007)

    MATH  MathSciNet  Google Scholar 

  46. Yoshihara, H.: Rational curve with Galois point and extendable Galois automorphism (preprint)

  47. Yoshihara, H.: A note on minimal Galois embedding of abelian surface (preprint)

  48. Yoshihara, H.: Open questions. Available at: http://mathweb.sc.niigata-u.ac.jp/~yosihara/openquestion.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoru Fukasawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukasawa, S. Galois points for a plane curve in arbitrary characteristic. Geom Dedicata 139, 211–218 (2009). https://doi.org/10.1007/s10711-008-9325-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-008-9325-2

Keywords

Mathematics Subject Classification (2000)

Navigation