Skip to main content
Log in

Projective background of the infinitesimal rigidity of frameworks

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

We present proofs of two classical theorems. The first one, due to Darboux and Sauer, states that infinitesimal rigidity is a projective invariant; the second one establishes relations (infinitesimal Pogorelov maps) between the infinitesimal motions of a Euclidean framework and of its hyperbolic and spherical images. The arguments use the static formulation of infinitesimal rigidity. The duality between statics and kinematics is established through the principles of virtual work. A geometric approach to statics, due essentially to Grassmann, makes both theorems straightforward. Besides, it provides a simple derivation of the formulas both for the Darboux-Sauer correspondence and for the infinitesimal Pogorelov maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blaschke W.: Über affine Geometrie XXVI: Wackelige Achtflache. Math. Zeitschr. 6, 85–93 (1920)

    Article  MathSciNet  Google Scholar 

  2. Bolker E.D., Roth B.: When is a bipartite graph a rigid framework?. Pacific J. Math. 90(1), 27–44 (1980)

    MATH  MathSciNet  Google Scholar 

  3. Braden T.: Remarks on the combinatorial intersection cohomology of fans. Pure Appl. Math. Q. 2(4), 1149–1186 (2006)

    MATH  MathSciNet  Google Scholar 

  4. Cauchy A.-L.: Sur les polygones et polyèdres, second mémoire. J. de l’Ecole Polytech. 19, 87–98 (1813)

    Google Scholar 

  5. Connelly R.: The rigidity of certain cabled frameworks and the second-order rigidity of arbitrarily triangulated convex surfaces. Adv. Math. 37(3), 272–299 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  6. Connelly R.: Rigidity. In: Gruber, P.M., Wills, J.M.(eds) Handbook of Convex Geometry, vol. A, B,, pp. 223–271. North-Holland, Amsterdam (1993)

    Google Scholar 

  7. Crapo H., Whiteley W.: Statics of framework and motions of panel structures, a projective geometric introduction. Topologie Struct. 6, 43–82 (1982)

    MathSciNet  Google Scholar 

  8. Darboux, G.: Leçons sur la théorie générale des surfaces. III, IV. Les Grands Classiques Gauthier-Villars. Éditions Jacques Gabay, Sceaux, (1993)

  9. Dehn M.: Über die Starrheit konvexer Polyeder. Math. Ann. 77, 466–473 (1916)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fillastre, F.: Polyhedral hyperbolic metrics on surfaces. arXiv:0801.0538, accepted to Geometriae Dedicata

  11. Gluck, H.: Almost all simply connected closed surfaces are rigid. In: Geometric Topology (Proc. Conf., Park City, Utah, 1974). Lecture Notes in Math., vol. 438, pp. 225–239. Springer, Berlin (1975)

  12. John W., Rankine M.: On the application of barycentric perspective to the transformation of structures. Phil. Mag. Series 4(26), 387–388 (1863)

    Google Scholar 

  13. Kalai G.: Rigidity and the lower bound theorem. I. Invent. Math. 88(1), 125–151 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  14. Klein, F.: Elementary Mathematics from an Advanced Standpoint. Geometry. Dover Publications, Mineola, NY, vol. x, 214 p (2004)

  15. Lee C.W.: P.L.-spheres, convex polytopes and stress. Discrete. Comput. Geom. 15(4), 389–421 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  16. Legendre, A.-M.: Éléments de géométrie, avec des notes, pp. 321–334. Firmin Didot, (1794) (An II)

  17. Liebmann H.: Ausnahmefachwerke und ihre Determinante. Münch. Ber. 50, 197–227 (1920)

    Google Scholar 

  18. Lindemann F.: Über unendlich kleine Bewegungen starrer K örper bei allgemeiner projectivischer Massbestimmung. Math. Ann. 7, 56–143 (1874)

    Article  Google Scholar 

  19. McMullen P.: On simple polytopes. Invent. Math. 113(2), 419–444 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  20. McMullen P.: Weights on polytopes. Discrete Comput. Geom. 15(4), 363–388 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  21. Pogorelov, A.V.: Extrinsic geometry of convex surfaces. Translations of Mathematical Monographs, vol. 35. Providence, R.I.: American Mathematical Society (AMS). VI (1973)

  22. Roth B., Whiteley W.: Tensegrity frameworks. Trans. Amer. Math. Soc. 265(2), 419–446 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  23. Saliola, F., Whiteley, W.: Some notes on the equivalence of first-order rigidity in various geometries. arXiv:0709.3354

  24. Sauer R.: Infinitesimale Verbiegungen zueinander projektiver Flächen. Math. Ann. 111, 71–82 (1935)

    Article  MathSciNet  Google Scholar 

  25. Sauer R.: Projektive S ätze in der Statik des starren K örpers. Math. Ann. 110(1), 464–472 (1935)

    Article  MathSciNet  Google Scholar 

  26. Schlenker J.-M.: A rigidity criterion for non-convex polyhedra. Discrete Comput. Geom. 33(2), 207–221 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  27. Schlenker J.-M.: Hyperbolic manifolds with convex boundary. Invent. Math. 163(1), 109–169 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  28. Stanley R.P.: The number of faces of a simplicial convex polytope. Adv. Math. 35(3), 236–238 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  29. Tay T.-S., Whiteley W.: A homological interpretation of skeletal ridigity. Adv. Appl. Math. 25(1), 102–151 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  30. Tay, T.-S., White, N., Whiteley, W.: Skeletal rigidity of simplicial complexes. I, II. Eur. J. Combin. 16(4,5), 381–403, 503–523 (1995)

    Google Scholar 

  31. Volkov, Yu.A.: Generalization of theorems of Darboux-Sauer and Pogorelov. Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova. 45, 63–67 (1974); Russian Translation in J. Sov. Math. 8, 444–448 (1978)

  32. Whiteley W.: Motions and stresses of projected polyhedra. Struct. Topol. 7, 13–38 (1982) (with a French translation)

    MATH  MathSciNet  Google Scholar 

  33. Whiteley W.: Infinitesimal motions of a bipartite framework. Pacific J. Math. 110(1), 233–255 (1984)

    MATH  MathSciNet  Google Scholar 

  34. Whiteley W.: Infinitesimally rigid polyhedra. I. Statics of frameworks. Trans. Amer. Math. Soc. 285(2), 431–465 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  35. Whiteley, W.: The projective geometry of rigid frameworks. In: Finite Geometries, Pap. Conf. Winnipeg/Can. 1984, vol. 103 of Lect. Notes Pure Appl. Math., pp. 353–370 (1985)

  36. Whiteley W.: Rigidity and polarity. I. Statics of sheet structures. Geom. Dedicata 22(3), 329–362 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  37. Whiteley W.: Rigidity and polarity. II. Weaving lines and tensegrity frameworks. Geom. Dedicata 30(3), 255–279 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  38. Wunderlich W.: Starre, kippende, wackelige und bewegliche Achtfläche. Elem. Math. 20, 25–32 (1965)

    MATH  MathSciNet  Google Scholar 

  39. Wunderlich W.: Projective invariance of shaky structures. Acta Mech. 42, 171–181 (1982)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Izmestiev.

Additional information

The research for this article was supported by the DFG Research Unit “Polyhedral Surfaces”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Izmestiev, I. Projective background of the infinitesimal rigidity of frameworks. Geom Dedicata 140, 183–203 (2009). https://doi.org/10.1007/s10711-008-9339-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-008-9339-9

Keywords

Mathematics Subject Classification (2000)

Navigation