Skip to main content
Log in

Commensurability of geometric subgroups of mapping class groups

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

Let M be an orientable surface with punctures and/or boundary components. Paris and Rolfsen (J Reine Angew Math 521:47–83, 2000) studied “geometric subgroups” of the mapping class group of M, that is subgroups corresponding to inclusions of connected subsurfaces. In the present paper we extend this analysis to disconnected subsurfaces and to the nonorientable case. We characterise the subsurfaces which lead to virtually abelian geometric subgroups. We provide algebraic and geometric conditions under which two geometric subgroups are commensurable. We also describe the commensurator of a geometric subgroup in terms of the stabiliser of the underlying subsurface. Finally, following the work of Paris (Math Ann 322:301–315, 2002), we show some applications of our analysis to the theory of irreducible unitary representations of mapping class groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birman J.S.: Mapping class groups and their relationship to braid group. Comm. Pure Appl. Math. 22, 213–238 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  2. Burger M., de la Harpe P.: Constructing irreducible representations of discrete groups. Proc. Indian Acad. Sci. 107, 223–235 (1997)

    Article  MATH  Google Scholar 

  3. Chillingworth D.R.J.: A finite set of generators for the homeotopy group of a non-orientable surface. Math. Proc. Cambridge Philos. Soc. 65, 409–430 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  4. Epstein D.B.A.: Curves on 2-manifolds and isotopies. Acta. Math. 115, 83–107 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  5. Korkmaz M.: First homology group of mapping class groups of nonorientable surfaces. Math. Proc. Cambridge Philos. Soc. 123(3), 487–499 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Korkmaz M.: Mapping class groups of nonorientable surfaces. Geom. Dedicata 89, 109–133 (2002)

    Article  MathSciNet  Google Scholar 

  7. Labruère C., Paris L.: Presentations for the puctured mapping class groups in terms of Artin groups. Algebr. Geom. Topol. 1, 73–114 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Lickorish W.B.R.: A representation of orientable combinatorial 3-manifolds. Ann. Math. 76, 531–540 (1962)

    Article  MathSciNet  Google Scholar 

  9. Lickorish W.B.R.: Homeomorphisms of non-orientable two-manifolds. Math. Proc. Cambridge Philos. Soc. 59, 307–317 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  10. Lickorish W.B.R.: A finite set of generators for the homeotopy group of a 2-manifold. Math. Proc. Cambridge Philos. Soc. 60, 769–778 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  11. Mackey G.W.: The theory of unitary group representations. Chicago Lectures in Mathematics. The Uni- versity of Chicago Press, Chicago (1976)

    Google Scholar 

  12. Paris L.: Actions and irreducible representations of the mapping class group. Math. Ann. 322, 301–315 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Paris L., Rolfsen D.: Geometric subgroups of mapping class groups. J. Reine. Angew Math. 521, 47–83 (2000)

    MATH  MathSciNet  Google Scholar 

  14. Spanier E.H.: Algebraic topology. McGraw-Hill Book Co., New York (1966)

    MATH  Google Scholar 

  15. Stukow, M.: Generating mapping class groups of nonorientable surfaces with boundary. arXiv:0707. 3497v1 (2007)

  16. Stukow M.: Dehn twists on nonorientable surfaces. Fund. Math. 189, 117–147 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Stukow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stukow, M. Commensurability of geometric subgroups of mapping class groups. Geom Dedicata 143, 117–142 (2009). https://doi.org/10.1007/s10711-009-9377-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-009-9377-y

Keywords

Mathematics Subject Classification (2000)

Navigation