Skip to main content

Advertisement

Log in

Electrical Properties of Crustal and Mantle Rocks – A Review of Laboratory Measurements and their Explanation

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

The electrical properties of rocks and minerals are controlled by thermodynamic parameters like pressure and temperature and by the chemistry of the medium in which the charge carriers move. Four different charge transport processes can be distinguished. Electrolytic conduction in fluid saturated porous rocks depends on petrophysical properties, such as porosity, permeability and connectivity of the pore system, and on chemical parameters of the pore fluid like ion species, its concentration in the pore fluid and temperature. Additionally, electrochemical interactions between water dipoles or ions and the negatively charged mineral surface must be considered. In special geological settings electronic conduction can increase rock conductivities by several orders of magnitude if the highly conducting phases (graphite or ores) form an interconnected network. Electronic and electrolytic conduction depend moderately on pressure and temperature changes, while semiconduction in mineral phases forming the Earth’s mantle strongly depends on temperature and responds less significantly to pressure changes. Olivine exhibits thermally induced semiconduction under upper mantle conditions; if pressure and temperature exceed ~ 14 GPa and 1400 °C, the phase transition olivine into spinel will further enhance the conductivity due to structural changes from orthorhombic into cubic symmetry. The thermodynamic parameters (temperature, pressure) and oxygen fugacity control the formation, number and mobility of charge carriers. The conductivity temperature relation follows an Arrhenius behaviour, while oxygen fugacity controls the oxidation state of iron and thus the number of electrons acting as additional charge carriers. In volcanic areas rock conductivities may be enhanced by the formation of partial melts under the restriction that the molten phase is interconnected. These four charge transport mechanisms must be considered for the interpretation of geophysical field and borehole data. Laboratory data provide a reproducible and reliable database of electrical properties of homogenous mineral phases and heterogenous rock samples. The outcome of geoelectric models can thus be enhanced significantly. This review focuses on a compilation of fairly new advances in experimental laboratory work together with their explanation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • G. Archie (1942) ArticleTitle‘The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics’ Trans. Am. Inst. Mineral. Met. 146 54–62

    Google Scholar 

  • S. I. Akimoto H. Fujisawa (1965) ArticleTitle‘Demonstration of the Electrical Conductivity Jump Produced by the Olivine Spinel Transition’ J. Geophys. Res. 70 443–449

    Google Scholar 

  • Bagdassarov, N., Schmeling, H., and Ildefonse, B.: 2002, ‘Partial Melting of Mafic Rocks from Electrical Impedance Spectroscopy Measurements’, Pers. commun.

  • I. E. Bauerle (1969) ArticleTitle‘Study of Solid Electrolyte Polarisation by a Complex admittance Method’ J. Phys. Chem. Solids 30 2657–2670

    Google Scholar 

  • Y. Bernabe (1986) ArticleTitle‘Pore Volume and Transport Changes During Pressure Cycling of Several Crystalline Rocks’ Mech. Mater. 5 235–249 Occurrence Handle10.1016/0167-6636(86)90021-9

    Article  Google Scholar 

  • Y. Bernabe (1988) ArticleTitle‘Comparison of Effective Pressure Law for Permeability and Resistivity formation Factor in Chelmsford Granite’ PAGEOPH 127 607–625 Occurrence Handle10.1007/BF00881747

    Article  Google Scholar 

  • M. Bonijoly M. Oberlin A. Oberlin (1982) ArticleTitle‘A Possible Mechanism for Natural Graphite Formation’ Int. J. Coal Geol. 1 283–313 Occurrence Handle10.1016/0166-5162(82)90018-0

    Article  Google Scholar 

  • F.D. Börner J. H. Schön (1995) ArticleTitle‘Low Frequency Complex Conductivity Measurements of Microcrack Properties’ Surv. Geophys. 16 121–135

    Google Scholar 

  • W.H. Campbell (1987) ArticleTitle‘Introduction to Electrical Properties of the Earth’s Mantle’ PAGEOPH 125 194–204

    Google Scholar 

  • P.C. Carman (1965) Flow of Gases Through Porous Media Butterworth Scientific Publications London

    Google Scholar 

  • L. Cemic E. Hinze G. Will (1978) ArticleTitle‘Messung der Elektrischen Leitfähigkeit bei Kontrollierten Sauerstoffaktivitäten in Druckapparaturen mit festen Drückübertragungsmedien’ High Temp. High Pres. 10 469–472

    Google Scholar 

  • L. Cemic G. Will E. Hinze (1980) ArticleTitle‘Electrical Conductivity Measurements on Olivines Mg2SiO4–Fe2SiO4 Under Defined Thermodynamic Conditions’ Phys. Chem. Min. 6 95–107 Occurrence Handle10.1007/BF00311048

    Article  Google Scholar 

  • K.S. Cole R.H. Cole (1941) ArticleTitle‘Alternating Current Characteristics’ J. Chem. Phys. 9 341–351

    Google Scholar 

  • S.C. Constable A.G. Duba (1990) ArticleTitle‘Electrcal Conductivity of Olivine, a Dunite and the Mantle’ J. Geophys. Res. 95 6967–6978

    Google Scholar 

  • S.C. Constable T.J. Shankland A.G. Duba (1992) ArticleTitle‘Conductivity of Isotropic Olivine’ J. Geophys. Res. 97 3397–3404

    Google Scholar 

  • S.C. Constable J.J. Roberts (1997) ArticleTitle‘Simultaneous Modelling of Thermopower and Electrical Conduction in Olivine’ Phys. Chem. Min. 24 319–325 Occurrence Handle10.1007/s002690050044

    Article  Google Scholar 

  • Dachnov, W.N.: 1975, in: Schön, Petrophysik, Enke Verlag, Stuttgart, ISBN 3-432-92971-4

  • C. David M Darot (1989) ‘Permeability and Conductivity of Sandstones’ V. Maury D. Fourmaintroux V. Maury (Eds) Proc. Symp. ’Rock at great depth‘ Rotterdam The Netherlands 203–209

    Google Scholar 

  • C. David Y. Gueguen G. Pmpoukis (1990) ArticleTitle‘Effective Medium Theory and Network Theory Applied to the Transport Properties of Rocks’ J. Geophys. Res. 95 6993–7005

    Google Scholar 

  • P. Debye (1927) Polare Molekeln Verlag S. Hirzel Leipzig

    Google Scholar 

  • P. Debye (1913) ArticleTitle‘Zur Theorie der Anomalen Dispersion im Gebiet der Langwelligen Elektrischen Strahlung’ Ber. Der Dt. Phys. Ges. 15 777–793

    Google Scholar 

  • A. Duba I.A. Nicholls (1973) ArticleTitle‘The Influence of Oxidation State on the Electrical Conductivity of Olivine’ Earth Planet. Sci. Lett. 18 59–64

    Google Scholar 

  • A. Duba C. Heard R.N. Schock (1974) ArticleTitle‘Electrical Conductivity at High Pressure and Under Controlled Oxygen Fugacity’ J. Geophys. Res. 79 1667–1673

    Google Scholar 

  • A. Duba T.J. Shankland (1982) ArticleTitle‘Free Carbon and Electrical Conductivity in the Earth’s Mantle’ Geophys. Res. Lett. 9 1271–1274

    Google Scholar 

  • A. Duba S. Heikamp H.J. Meurer G. Nover G. Will (1994) ArticleTitle‘Evidence from Borehole Samples for the Role of Accessory Minerals in Lower-Crustal-Conductivity’ Nature 367 59–61 Occurrence Handle10.1038/367059a0

    Article  Google Scholar 

  • A. Duba E. Huenges G. Nover G. Will H. Jödicke (1988) ArticleTitle‘Impedance of Blackshale from Münsterland 1 Borehole: An Anomalous Good Conductor?’ Geophys. J. 94 413–419

    Google Scholar 

  • A. Duba S. Constable (1993) ArticleTitle‘The Electrical Conductivity of a Lherzolite’ J. Geophys. Res. 98 11885–19000

    Google Scholar 

  • A. Duba E.A. Mathez T.J. Shankland (1982) ArticleTitle‘Workshop Addresses Crustal Carbon and its Effect on Electrical Conductivity’ EOS 82 IssueID40 456

    Google Scholar 

  • A. Duba J. Gönna Particlevon der (1994) ArticleTitle‘Comment on the Change of Electrical Conductivity of Olivine associated with the Olivine–Spinel Transition‘ Phys. Earth Planet. Inter. 82 75–77 Occurrence Handle10.1016/0031-9201(94)90104-X

    Article  Google Scholar 

  • InstitutionalAuthorNameELEKTB Group (1997) ArticleTitle‘KTB and the Electrical Conductivity of the Crust’ J. Geophys. Res. 102 18289–18305

    Google Scholar 

  • El-Kaliouby, H.M., Hussain, S., ElDiwany, E.A., Hashish, E., Bayoumi, A.R., and Poulton, M..M. (2001). Forward Modelling and inversion of IP Effects in TEM Response Using Measured Rock Samples Data. Pers. commun.

  • S. Fonton Particlede A. Oberlin M. Inagaki (1980) ArticleTitle‘Characterisation by Electron Microscopy of Carbon Phases (Intermediate Turbostratic Phase and Graphite) in Hard Carbons when Heattreated Under Pressure’ J. Mater. Sci. 15 909–917 Occurrence Handle10.1007/BF00552102

    Article  Google Scholar 

  • Fowler, C.M.R., Stead, D., Pandit, B.I., Janser, B.W., Nisbet E.G., and Nover, G.: 2005, ‘A Data Base of Physical Properties of Rocks from the Trans-Hudson Orogen, Canada’, Can. J. Earth Sci. in press

  • D. Freund G. Nover (1995) ArticleTitle‘Hydrostatic Pressure Tests for the Permeability – Formation Factor Relation on Crystalline Rocks from the KTB Drilling Project’ Surv. Geophys. 16 47–62 Occurrence Handle10.1007/BF00682712

    Article  Google Scholar 

  • B.D. Fuller S.H. Ward (1970) ArticleTitle‘Linear System Description of Electrical Parameters of Rocks’ IEEE Trans. GE-8 IssueID1 7–13

    Google Scholar 

  • Gaillard, F.: 2001, ‘Electrical Conductivity of Water-Bearing Magmas as a tool for Estimating Magmas Water Content?’, Annual Report, 3.6.c, Bayrisches Geoinstitut

  • Gaillard, F.: 2003, ‘Laboratory Measurements of Electrical Conductivity of Hydrous and Dry Silicate Melts Under Pressure’, Annual Report, 3.7.e, Bayrisches Geoinstitut

  • Gaillard, F., Bromiley, F.A., Bromiley, G.D., Rubie, D.C., and Poe, B.T.: 2003, ‘Mapping Water Distribution in the Earth’s Mantle by Combining Geophysical and Laboratory Methods’, Annual Report, 3.6.h., Bayrisches Geoinstitut

  • P.W.J. Glover F.J. Vine (1992) ArticleTitle‘Electrical Conductivity of Carbon Bearing Granulite at Raised Temperatures and Pressures’ Nature 360 723–725 Occurrence Handle10.1038/360723a0

    Article  Google Scholar 

  • P.W.J. Glover P.G. Meredith P.R. Sammons A.F. Murrell (1994) ArticleTitle‘Ionic Surface Electrical Conductivity in Sandstone’ J. Geophys. Res. 99 21635–21650

    Google Scholar 

  • P.W.J. Glover F.J. Vine (1995) ArticleTitle‘Beyond KTB – Electrical Conductivity of the Deep Continental Crust’ Surv. Geophys. 16 5–36 Occurrence Handle10.1007/BF00682710

    Article  Google Scholar 

  • P.W.J. Glover J.B. Gomez P.G. Meredith S.A. Boon P.R. Sammonds S.A.F. Murrell (1996) ArticleTitle‘Modelling the Stress–strain Behaviour of Saturated Rocks Undergoing Triaxial Deformation Using Complex Electrical Conductivity Measurements’ Surv. Geophys. 17 307–330

    Google Scholar 

  • V. Haak V.R.S. Hutton (1986) ‘Electrical Resistivity in the Continental Lower Crust’ J.B. Dawson D.A. Carswell J. Hall K.H. Wedepol (Eds) The Nature of the Lower Continental Crust NumberInSeries24 Spec. Pub.Geol. Soc. London 35–49

    Google Scholar 

  • Z. Hashin A. Shtrikman (1962) ArticleTitle‘A Variational Approach to the Theory of Effective Magnetic Permeability of Multiphase Materials’ J. Appl. Phys. 33 3125–3131 Occurrence Handle10.1063/1.1728579

    Article  Google Scholar 

  • E. Haslund B. Nost (1998) ArticleTitle‘Determination of Porosity and formation Factor of Water Saturated Porous Specimens from Dielectric Dispersion Measurements’ Geophysics 63 149–153 Occurrence Handle10.1190/1.1444307

    Article  Google Scholar 

  • S. Heikamp G. Nover (2003) ArticleTitle‘An Integrated Study on Physical Properties of a KTB Gneiss Sample and a Marble from Portugal: Pressure Dependence of the Permeability and Frequency Dependence of the Complex Electrical Impedance’ Pure Appl. Geophys. 160 929–936

    Google Scholar 

  • Hinze, E., Will, G., Cemic, L., and Manko, M.: 1982, ‘Electrical Conductivity Measurements on Synthetic Olivines at High Pressures and Temperatures Under Defined Thermodynamic Conditions’, in: W. Schreyer (ed.), High Pressure Research in Geoscience, Schweizerbart’sche Verlagsbuchhandlung, Stuttgart

  • E. Hinze G. Will L. Cemic (1981) ArticleTitle‘Electrical Conductivity Measurements on Synthetic Olivines and on Olivine, Enstatite and Diopsid from Dreiser Weiher, Eifel, Germany Under Defined thermodynamic activities as a Function of High Pressure and Temperature’ Phys. Earth Planet. Int. 25 245–254

    Google Scholar 

  • L.M. Hirsch T.J. Shankland (1993) ArticleTitle‘Qualitative Olivine Defect Chemical Model: insight on Electrical Conduction, Diffusion and the Role of Fe Content’ Geophys. J. Int. 114 21–35

    Google Scholar 

  • L.M. Hirsch T.J. Shankland (1993) ArticleTitle‘Electrical Conduction and Polaron Mobility in Fe-Bearing Olivine’ Geophys. J. Int. 114 36–44

    Google Scholar 

  • N. Hoffmann H. Jödicke P. Gerling (2001) ArticleTitle‘The Distribution of Pre-Westfalian Source Rocks in the North German Basin – Evidence from Magnetotelluric and Geochemical Data’ Geologie en Mijnbouw/ Nederlands J. Geosci. 80 IssueID1 71–84

    Google Scholar 

  • M. Jegen R.N. Edwards (1998) ArticleTitle‘The Electrical Properties of a 2D Conductive Zone Under the Juan De Fuca Ridge’ Geophys. Res. Lett. 25 3647–3650 Occurrence Handle10.1029/98GL52807

    Article  Google Scholar 

  • H. Jödicke J.H. Kruhl C. Ballhaus P. Giese J. Untiedt (2004) ArticleTitle‘Syngenetic Thin Graphite Rich Horizons in Lower Crustal Rocks from the Serr San Bruno, Calabria (Italy), and Implications for the Nature of High Conducting Deep Crustal Layers’ Phys. Earth Planet. Int. 141 37–58

    Google Scholar 

  • D.L. Johnson H.J. Manning (1986) ArticleTitle‘Theory of Pressure Dependent Resistivity in Crystalline Rocks’ J. Geophys. Res. 91 11611–11617

    Google Scholar 

  • D.L. Johnson P.N. Sen (1988) ArticleTitle‘Dependence of the Conductivity of a Porous Medium on Electrolyte Conductivity’ Phys. Rev. B 33 3502–3510

    Google Scholar 

  • A.K. Jonscher (1975) ArticleTitle‘The Interpretation of Non-ideal Admittance and Impedance Diagrams’ Phys. State Sol. 32 665–676

    Google Scholar 

  • A.K. Jonscher (1978) ArticleTitle‘Analysis of Alternating Current Properties of Ionic Conductors’ J. Mater. Sci. 13 553–562

    Google Scholar 

  • R.J. Knight A. Nur (1987) ArticleTitle‘The Dielectric Constant of Sandstones, 60 kHz to 4 MHz’ Geophysics 52 644–654 Occurrence Handle10.1190/1.1442332

    Article  Google Scholar 

  • R.J. Knight (1991) ArticleTitle‘Hysteresis in the Electrical Resistivity of Partially Saturated Sandstones’ Geophysics 56 2139–2147 Occurrence Handle10.1190/1.1443028

    Article  Google Scholar 

  • A. Kontny H. Friedrich H.J. Behr H. DeWall E. Horn P. Möller G. Zulauf (1997) ArticleTitle‘Formation of Ore Minerals in Metamorphic Rocks of the German Continental Deep Drilling Site (KTB)’ J. Geophys. Res. 102 18,323–18,336 Occurrence Handle10.1029/96JB03395

    Article  Google Scholar 

  • G. Losito P.A. Schnegg C. Lambellet C. Viti A. Trova (2001) ArticleTitle‘Microscopic Scale Conductivity as Explanation of Magnetotelluric Results from the Alps of West Switzerland’ Geophys. J. Int. 147 602–609 Occurrence Handle10.1046/j.0956-540x.2001.01555.x

    Article  Google Scholar 

  • Manko, M.: 1984, ‘Die frequenzabhängige elektrische Leitfähigkeit von Forsterit und Fayalit sowie von Olivin Peridotit Xenolithen des Dreiser Weihers unter hohen Drücken und definierten SiO2  Aktivitäten als Funktion von Temperatur und Sauerstoffugazität’, PhD-Thesis, Universität Bonn

  • Maumus, J., Bagdassarov N., Schmeling H., and Ildefonse B.: 2001, ‘Partial Melting of Mafic Rocks from Electrical Impedance Spectroscopy Measurements’, Www.geophysik.uni-frankfurt.de/~nickbagd/posterga.htm

  • K.S. Mendelson M.H. Cohen (1982) ArticleTitle‘The Effect of Grain Anisotropy on the Electrical Properties of Sedimentary Rocks’ Geophysics 47 257–263 Occurrence Handle10.1190/1.1441332

    Article  Google Scholar 

  • Mogk, D.W., and Mathez, E.A.: 2000, ‘Carbonaceous Films in Midcrustal Rocks from the KTB Borehole, Germany, as Characterised by Time-of-Flight Secondary Ion Mass Spectroscopy’, Geochem. Geophys. Geosyst. G3, 2000GC000081

  • Monteiro Santos, F.A., Mateus, A., Almeida, E.P., Pous J., and Mendes-Victor, L.: 2002, ‘Are Some of the Deep Crustal Conductive Features Found in SW Iberia Caused by Graphite?’, Earth Planet. Sci. Lett., 353–367

  • P. Morat J.L. Mouel ParticleLe (1987) ArticleTitle‘Variation of the Electrical Resistivity of Large Rock Samples with Stress’ Geophysics 32 1424–1430

    Google Scholar 

  • Morat, P., and Le Mouel, J.L.: 1992, ‘Electrical Signals Generated by Stress Variations in Porous Non-saturated Rocks’, C.R. Academie Science, Paris, 315, 955–963

  • G. Nover G. Will R. Waitz (1992) ArticleTitle‘Pressure induced Phase Transitions in Mg2GeO4 as Determined by Frequency Dependent Complex Electrical Resistivity Measurements’ Phys. Chem. Min. 19 133–139 Occurrence Handle10.1007/BF00202100

    Article  Google Scholar 

  • G. Nover S. Heikamp A. Kontny A. Duba (1995) ArticleTitle‘The Effect of Pressure on the Electrical Conductivity of KTB Rocks’ Surv. Geophys. 16 63–81 Occurrence Handle10.1007/BF00682713

    Article  Google Scholar 

  • G. Nover S. Heikamp H.J. Meurer D. Freund (1998) ArticleTitle‘In situ Electrical Conductivity and Permeability of Mid-Crustal Rocks from the KTB Drilling: Consequences for High Conductive Layers in the Earth Crust’ Surv. Geophys. 19 73–85 Occurrence Handle10.1023/A:1006592016176

    Article  Google Scholar 

  • G. Nover S. Heikamp (2000) ArticleTitle‘Electrical Impedance Spectroscopy Used as a Tool for the Detection of Fractures in Rock Samples Exposed to Either Hydrostatic or Triaxial Pressure Conditions’ Natural Hazards 21 317–330 Occurrence Handle10.1023/A:1008122012610

    Article  Google Scholar 

  • G. Nover S. Heikamp (2001) ArticleTitle‘The Electrical Signature of Rock Samples Exposed to Hydrostatic and Triaxial Pressures’ Annali di Geofisika 44 287–294

    Google Scholar 

  • Nover, G., von der Gönna, J., and Meurer, HJ.: 2004b, ‘Electrical Conductivity of Reunion Island Basalt and Tuff’, Geophys. J. Int. in preparation

  • G. Nover J.B. Stoll (2005) ArticleTitle‘Promotion of Graphite formation by Tectonic Stress – A Laboratory Experiment’ Geophys. J. Int 160 1059–1067 Occurrence Handle10.1111/j.1365-246X.2005.02395.x

    Article  Google Scholar 

  • Nover, G., Heikamp, S., Dürrast, H., and Siegesmund, S.: 2005, ‘Relationship Between Electrical and Hydraulic Properties of Reservoir Rocks’, Geophys. J. Int., accepted

  • A. Oberlin (1984) ArticleTitle‘Carbonisation and Graphitisation’ Carbon 22 521–541

    Google Scholar 

  • G.R. Olhoeft (1976) ‘Electrical Properties in Rocks’ R.J.G. Strens (Eds) The Physics and Chemistry of Rocks and Minerals. Wiley London 261–278

    Google Scholar 

  • GR. Olhoeft (1979) ArticleTitle‘Electrical Properties. Initial Report on the Petrophysics Laboratory’ U.S. Geol. Survey Circular 789 1–26

    Google Scholar 

  • Olhoeft, G.R.: 1985,‘ Low Frequency Electrical Properties’, Geophysics, 50, 2492–2503

  • Olhoeft, G.R.: 1987, ‘Electrical Properties from 10.3 to 109 Hz- Physics and Chemistry in Physics and chemistry of Porous Media II’, in: J.R. Bnavar, J. Koplik. and K.W. Winkler (eds.), AIP Conference Proceedings 154, American Institute of Physics, New York, pp. 281–298.

  • K. Omura (1991) ArticleTitle‘Change of Electrical Conductivity of Olivine associated with the Olivine–spinel Transition’ Phys. Earth Planet. Inter. 65 292–307 Occurrence Handle10.1016/0031-9201(91)90136-6

    Article  Google Scholar 

  • Pape, H., Riepe, L., and Schopper, JR.: 1981, ‘Calculating Permeability from Surface Area Measurements’, in: Porceedings of the Seventh Eur. Logg. Symp. Trans., Paris.

  • H. Pape C. Clauser J. Iffland (1999) ArticleTitle‘Variation of Permeability with Porosity in Sandstone Diagenesis Interpreted with Fractal Pore Space Model’ Geophysics 64 1447– 1460 Occurrence Handle10.1190/1.1444649

    Article  Google Scholar 

  • G.M. Partzsch F.R. Schilling J. Arndt (2000) ArticleTitle‘The influence of Partial Melting on the Electrical Behaviour of Crustal Rocks: Laboratory Examinations, Model Calculations and Geological interpretations’ Tectonophysics 317 189–203 Occurrence Handle10.1016/S0040-1951(99)00320-0

    Article  Google Scholar 

  • Poe, B.T., Romanero, C., and Tyburzcy, J.: 2001, ‘Effect of Dissolved Water on the Electrical Conductivity of Wadsleyite’, Annual Report, Bayrisches Geoinstitut

  • A. Revil M. Darot P.A. Pezard (1996) ArticleTitle‘From Surface Electrical Properties to Spontaneous Potentials in Porous Media’ Surv. Geophys. 17 331–346 Occurrence Handle10.1007/BF01904047

    Article  Google Scholar 

  • A. Revil L.M. Cathles SuffixIII S. Losh J.A. Nunn (1998) ArticleTitle‘Electrical Conductivity in Shaly Sands with Geophysical applications’ J. Geophys. Res. 103 23925–23936 Occurrence Handle10.1029/98JB02125

    Article  Google Scholar 

  • J.J. Roberts J.A. Tyburczy (1993) ArticleTitle‘Frequency Dependent Electrical Properties of Dunite as Functions of Temperature and Oxygen Fugacity’ Phys. Chem. Min. 19 545–561 Occurrence Handle10.1007/BF00203054

    Article  Google Scholar 

  • J.J. Roberts J.A. Tyburczy (1993) ArticleTitle‘Impedance Spectroscopy of Single and Polycrystalline Olivine: Evidence for Grain Boundary Transport’ Phys. Chem. Min. 20 19–26 Occurrence Handle10.1007/BF00202246

    Article  Google Scholar 

  • J.J. Roberts J.A. Tyburczy (1999) ArticleTitle‘Partial Melt Electrical Conductivity: influence of Melt Composition’ J. Geophys. Res. 104 7055–7065

    Google Scholar 

  • J.J. Roberts A.G. Duba E.A. Mathez T.J. Shankland R. Kinzler (1999) ArticleTitle‘Carbon-Enhanced Electrical Conductivity During Fracture of Rocks’ J. Geophys. Res. 104 737–747

    Google Scholar 

  • J.J. Roberts A. Ramirez S. Carlson W. Ralph B.P. Bonner W. Daily (2001) ArticleTitle‘Laboratory and Field Measurements of Electrical Resistivity to Determine Saturation and Detect Fractures in a Heated Rock Mass’ Geothermal Resources Council Trans. 25 26–29

    Google Scholar 

  • J.J. Roberts (2002) ArticleTitle‘Electrical Properties of Microporous Rock as a Function of Saturation and Temperature’ J. Appl. Phys. 91 1687–1694 Occurrence Handle10.1063/1.1430544

    Article  Google Scholar 

  • Rouzaud, J., Oberlin, A., Deurbergue, A., and Kwak, Y.H.: 1990, ‘Structural Study of Graphitisation in the Moongyeong Coalfield South Korea’, Bull. Soc. Geol. Fr. Spec. Congr. Coal Formation, Occurrence and Related Properties, Orleans

  • J.V. Ross R.M. Bustin (1990) ArticleTitle‘The Role of Strain Energy in Creep Graphitisation of anthracite’ Nature 343 58–60 Occurrence Handle10.1038/343058a0

    Article  Google Scholar 

  • J.V. Ross R.M. Bustin J.N. Rouzaud (1991) ArticleTitle‘Graphitisation of High Rank Coals – the Role of Shear Strain: Experimental Considerations’ Organ. Geochem. 17 585–596

    Google Scholar 

  • C. Ruffet Y. Gueguen M. Darot (1991) ArticleTitle‘Complex Conductivity Measurements and Fractal Nature of Porosity’ Geophysics 56 758–768 Occurrence Handle10.1190/1.1443093

    Article  Google Scholar 

  • C. Ruffet M. Darot Y. Gueguen (1995) ArticleTitle‘Surface Conductivity in Rocks: A Review’ Surv. Geophys. 16 83–105 Occurrence Handle10.1007/BF00682714

    Article  Google Scholar 

  • Scarlato, P., Freda, C., and Poe, BT.: 2001, ‘HP–HT Measurements of Electrical Conductivity in Basaltic Rocks from Mt. Etna, Sicily, Italy’, Annual Report, Bayrisches Geoinstitut

  • F.R. Schilling G.M. Partzsch (2001) ArticleTitle‘Quantifying Partial Melt Fraction in the Crust Beneath the Central andes and the Tibetan Plateau’ Phys. Chem. Earth 26 239–246

    Google Scholar 

  • R.N. Schock A.G. Duba T.J. Shankland (1989) ArticleTitle‘Electrical Conduction in Olivine’ J. Geophys. Res. 94 5829–5839

    Google Scholar 

  • Schön, J.: 1983, Petrophysik, Enke Verlag Stuttgart

  • F.R. Schilling G.M. Partzsch H. Brasse G. Schwarz (1997) ArticleTitle‘Partial Melting Below the Magmatic arc in the Central andes Deduced from Geoelectromagnetic Field Experiments and Laboratory Data’ Phys. Earth Planet. Int. 103 17–31

    Google Scholar 

  • P.N. Sen (1981) ArticleTitle‘Relation of Certain Geometrical Features to the Dielectric anomaly of Rocks’ Geophysics 46 1714–1720

    Google Scholar 

  • P.N. Sen (1984) ArticleTitle‘Grain Shape Effects on Dielectric and Electrical Properties of Rocks’ Geophysics 49 586–587 Occurrence Handle10.1190/1.1441695

    Article  Google Scholar 

  • T.J. Shankland H.S. Waff (1974) ArticleTitle‘Conductivity in Fluid Bearing Rocks’ J. Geophys. Res. 79 4863–4868

    Google Scholar 

  • T.J. Shankland H.S. Waff (1977) ArticleTitle‘Partial Melting and Electrical Conductivity Anomalies in the Upper Mantle’ J. Geophys. Res. 82 5409–5417 Occurrence Handle10.1029/JB082i033p05409

    Article  Google Scholar 

  • T.J. Shankland (1979) ArticleTitle‘Physical Properties of Minerals and Melts’ Rev. Geophys. Space Phys. 17 792–802

    Google Scholar 

  • T.J. Shankland R.J. O’Connell H.S. Waff (1981) ArticleTitle‘Geophysical Constraints on Partial Melt in the Upper Mantle’ Rev. Geophys. Space Phys. 19 394–406

    Google Scholar 

  • T.J. Shankland A.G. Duba E.A Mathez C.L. Peach (1997) ArticleTitle‘Increase of Electrical Conductivity with Pressure as an Indicator of Conduction Through a Solid Phase in Midcrustal Rocks’ J. Geophys. Res. 102 14741–14750 Occurrence Handle10.1029/96JB03389

    Article  Google Scholar 

  • J. Stoll (1993) ArticleTitle‘A Mise-a-la-masse Experiment for Detecting an Electric Network around the KTB’ KTB-Report 93–2 361–364

    Google Scholar 

  • J. Stoll J. Bigalke E.W. Grabner (1995) ArticleTitle‘Electrochemical Modelling of Self Potential Anomalies’ Surv. Geophys. 16 107–120 Occurrence Handle10.1007/BF00682715

    Article  Google Scholar 

  • J. Stoll V. Haak K. Spitzer (2000) ArticleTitle‘The Electrical Double Dipole Experiment in the KTB Deep Borehole’ J. Geophys. Res. 105 21319–21331 Occurrence Handle10.1029/2000JB900145

    Article  Google Scholar 

  • Teichmüller, R., and Teichmüller M.: 1982, ‘Inkohlungsgradienten in der Anthrazitfolge des Ibbenbürener Karbons’, Fortschr. Geol. Rheinl. u. Westf., 27, 201–276

  • J.A. Tyburczy H.S. Waff (1983) ArticleTitle‘Electrical Conductivity of Molten Basalt and Andesite to 25 Kilobars Pressure: Geophysical Significance and Implications for Charge Transport and Melt Structure’ J. Geophys. Res. 88 2413–2430

    Google Scholar 

  • von der Gönna, J.: 1997 ‘In situ Untersuchungen zur Phasentransformation Olivin-Spinell im Modellsystem Mg2GeO4 mittels Impedanzspektroskopie und energiedispersiver Röntgenbeugung’, PhD Thesis, University Bonn.

  • H. Vanhala H. Soininen (1995) ArticleTitle‘Laboratory Technique for Measurement of Spectral induced Polarisations Response of Soil Samples’ Geophys. Prospect. 43 655–676

    Google Scholar 

  • Vanhala, H.: 1997, ‘Laboratory and Field Studies of Environmental and Exploration applications of the Spectral induced-Polarisation (SIP) Method’, PhD Thesis, Geological Survey of Finland.

  • H.S. Waff (1974) ArticleTitle‘Theoretical Considerations of Electrical Conductivity in a Partial Molten Mantle and Implications for Geothermometry’ J. Geophys. Res. 79 4003–4010

    Google Scholar 

  • Walter, J., and Althaus, E.: 1993, ‘Graphite Deposition in Tectonically Mobilised Fault Planes of the KTB Pilot Drill Hole’, KTB-Report, 93-2, 455–460

  • B.J. Wanamaker A.G. Duba (1993) ArticleTitle‘Electrical Conduction of San Carlos Olivine along [001] Under Oxygen- and Pyroxene Buffered Conditions’ J. Geophys. Res. 98 489–500

    Google Scholar 

  • Waxman, M.H., and Smits, L.J.: 1968, ‘Electrical Conduction in Oil Bearing Sands’, Soc. Petr. Eng. J., 8, 107–122

    Google Scholar 

  • K.R. Wilks M. Mastalerz J.V. Ross R.M. Bustin (1993) ArticleTitle‘The Effect of Experimental Deformation on the Graphitisation of Pennsylvania Anthracite’ Int. J. Coal Geol. 24 347–369 Occurrence Handle10.1016/0166-5162(93)90019-7

    Article  Google Scholar 

  • D. Wildenschild J.J. Roberts E.D. Carlberg (2000) ArticleTitle‘On the Relationship Between Microstructure and Electrical and Hydraulic Properties of Sand–clay Mixtures’ Geophys. Res. Lett. 27 3083–3088 Occurrence Handle10.1029/2000GL011553

    Article  Google Scholar 

  • Y. Xu B.T. Poe T.J. Shankland (1998) ArticleTitle‘Electrical Conductivity of Olivine, Wadsleyite, and Ringwoodite Under Upper Mantle Conditions’ Science 280 1415–1418 Occurrence Handle10.1126/science.280.5368.1415

    Article  Google Scholar 

  • Y. Xu T.J. Shankland A.G. Duba (2000) ArticleTitle‘Pressure Effect on Electrical Conductivity of Mantle Olivine’ Phys. Earth Planet. Int. 118 149–161

    Google Scholar 

  • Y. Xu T.J. Shankland (1999) ArticleTitle‘Electrical Conductivity of Orthopyroxen and its High Pressure Phases’ Geophys. Res. Lett. 26 2645–2648 Occurrence Handle10.1029/1999GL008378

    Article  Google Scholar 

  • T. Yagi S.I. Akimoto (1974) ArticleTitle‘Electrical Conductivity Jump Produced by the α−β−γ Transformation in Mn2GeO4Phys. Earth Planet. Int. 8 235–240

    Google Scholar 

  • G. Zulauf (1992) ArticleTitle‘Late to Post Variscian Deformation Phases and Paleostresses in the KTB Pilot Research well (Bohemian Massif, Germany)’ Tectonophysics 202 1–21 Occurrence Handle10.1016/0040-1951(92)90452-C

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Nover.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nover, G. Electrical Properties of Crustal and Mantle Rocks – A Review of Laboratory Measurements and their Explanation. Surv Geophys 26, 593–651 (2005). https://doi.org/10.1007/s10712-005-1759-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-005-1759-6

Keywords

Navigation