Skip to main content

Advertisement

Log in

Electrical Structure in Marine Tectonic Settings

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

This review paper presents recent research on electrical conductivity structure in various marine tectonic settings. In at least three areas, marine electromagnetic studies for structural exploration have increasingly progressed: (1) data accumulations, (2) technical advances both for hardware and software, and (3) interpretations based on multidisciplinary approaches. The mid-ocean ridge system is the best-studied tectonic setting. Recent works have revealed evidence of conductive zones of hydrothermal circulation and axial magma chambers in the crust and partial melt zones of the mid-ocean ridge basalt source in the mantle. The role of water or dissolved hydrogen and its redistribution at mid-ocean ridges is emphasized for the conductivity pattern of the oceanic lithosphere and asthenosphere. Regions of mantle upwelling (hotspot or plume) and downwelling (subducting slab) are attracting attention. Evidence of heterogeneity exists not only in the crust and the upper mantle, but also in the mantle transition zone. Electrical conductive zones frequently overlap seismic low-velocity zones, but discrepancies are also apparent. Some studies have compared conductivity models with the results of seismic and other studies to investigate the physical properties or processes. A new laboratory-based conductivity model for matured oceanic lithosphere and asthenosphere is proposed. It takes account of both the water distribution in the mantle as well as the thermal structure. It explains observed conductivity patterns in the depth range of 60–200 km.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baba, K. and Chave, A.D.: 2005. ‘Correction of Seafloor Magnetotelluric Data for Topographic Effects During Inversion’, J. Geophys. Res., in press

  • Baba, K., Chave, A. D., Evans, R. L., Hirth, G., and Mackie, R.L.: 2004a. ‘Mantle Dynamics Beneath the East Pacific Rise at 17°S: Insights from the MELT EM Data’, J. Geophys. Res., submitted

  • K. Baba N. Seama (2002) ArticleTitle‘A New Technique for the Incorporation of Seafloor Topography in Electromagnetic Modeling’ Geophys. J. Int. 150 392–402 Occurrence Handle10.1046/j.1365-246X.2002.01673.x

    Article  Google Scholar 

  • Baba, K., Seama, N., Goto, T., Ichiki, M., Schwalenberg, K., Suyehiro, K. and Utada, H.: 2004b. ‘Electrical Transection of the Upper Mantle in the Mariana Subduction System’, in: Proceedings of the 17th Workshop on Electromagnetic Induction in the Earth, Hyderabad, India, October 18–23.

  • Chave, A.D. Constable, S.C. and Edwards, R.N.: 1991. Electrical Exploration Methods for the Seafloor, Vol. 2 of Electromagnetic Methods in Applied Geophysics, Chapt. 12, pp. 931–966, Soc. of Explor. Geophys., Tulsa, OK

  • Chave, A.D. Evans, R.L., Hirth, J.G., Tarits, P., Mackie, R.L., Booker, J.R. and the MELT Team.: 2001. ‘Anisotropic Electrical Structure Beneath the East Pacific Rise at 17°S’, in: OHP/ION Joint Symposium, Long-term Observations in the Oceans: Current Status and Perspectives for the Future, pp. 119–123.

  • A. D. Chave J. T. Smith (1994) ArticleTitle‘On Electric and Magnetic Galvanic Distortion Tensor Decompositions’ J. Geophys. Res. 99 IssueIDB3 4669–4682 Occurrence Handle10.1029/93JB03368

    Article  Google Scholar 

  • S. Constable G. Heinson (2004) ArticleTitle‘Hawaiian Hot-spot Swell Structure from Seafloor MT Sounding’ Tectonophysics 389 IssueID1–2 111–124

    Google Scholar 

  • S. C. Constable C. S. Cox (1996) ArticleTitle‘Marine Controlled-Source Electromagnetic Sounding. 2. The PEGASUS Experiment’ J. Geophys. Res. 101 IssueIDB3 5519–5530 Occurrence Handle10.1029/95JB03738

    Article  Google Scholar 

  • S. Constable G. Heinson (1993) ArticleTitle‘In Defence of a Resistive Oceanic Upper Mantle: Reply to a Comment by Tarits, Chave and Schultz’ Geophys. J. Int. 114 717–723

    Google Scholar 

  • S. C. Constable G. S. Heinson G. Anderson A. White (1997) ArticleTitle‘Seafloor Electromagnetic Measurements above Axial Seamount, Juan De Fuca Ridge’ J. Geomag. Geoelectr. 49 1327–1342

    Google Scholar 

  • S. C. Constable A. S. Orange G. M. Hoversten H. F. Morrison (1998) ArticleTitle‘Marine Magnetotellurics for Petroleum Exploration. Part I: A Sea-Floor Equipment System’ Geophysics 63 IssueID3 816–825 Occurrence Handle10.1190/1.1444393

    Article  Google Scholar 

  • S. C. Constable R. L. Parker C. G. Constable (1987) ArticleTitle‘Occam’s Inversion: A Practical Algorithm for Generating Smooth Models from Electromagnetic Sounding Data’ Geophysics 52 IssueID3 289–300 Occurrence Handle10.1190/1.1442303

    Article  Google Scholar 

  • S. C. Constable T. J. Shankland A. Duba (1992) ArticleTitle‘The Electrical Conductivity of an Isotropic Olivine Mantle’ J., Geophys. Res. 97 IssueIDB3 3397–3404

    Google Scholar 

  • C. Groot-Hedlin ParticleDe S. Constable (1990) ArticleTitle‘Occam’s Inversion to Generate Smooth, Two-dimensional Models from Magnetotelluric Data’ Geophysics 55 IssueID12 1613–1624

    Google Scholar 

  • Dunn, R.A. and Forsyth, D.W.: 2003. ‘Imaging the Transition Between the Region of Mantle Melt Generation and the Crustal Magma Chamber Beneath the Southern East Pacific Rise with Short Period Love Waves’, J. Geophys. Res., 108(B7): doi:10.1029/2002JB002217.

  • R. A. Dunn D. R. Toomey S. C. Solomon (2000) ArticleTitle‘Three-dimensional Seismic Structure and Physical Properties of the Crust and Shallow Mantle Beneath the East Pacific Rise at 9°30’N’ J. Geophys. Res. 105 IssueIDB10 23537–23555 Occurrence Handle10.1029/2000JB900210

    Article  Google Scholar 

  • Evans, R.L., Hirth, G., Baba, K., Forsyth, D., Chave, A. and Mackie, R.: 2005. ‘Compositional Controls on Oceanic Plates: Geophysical Evidence from the MELT Area’, Nature, in press

  • R. L. Evans M. C. Sinha S. C. Constable M. J. Unsworth (1994) ArticleTitle‘On the Electrical Nature of the Axial Melt Zone at 13° N on the East Pacific Rise’ J. Geophys. Res. 99 IssueIDB1 577–588 Occurrence Handle10.1029/93JB02577

    Article  Google Scholar 

  • R. L. Evans P. Tarits A. D. Chave A. White G. Heinson J. H. Filloux H. Toh N. Seama H. Utada J. R. Booker M. J. Unsworth (1999) ArticleTitle‘Asymmetric Electrical Structure in the Mantle Beneath the East Pacific Rise at 17 °S’ Science 286 752–756

    Google Scholar 

  • R. L. Evans S. C. Webb M. Jegen K. Sananikone (1998) ArticleTitle‘Hydrothermal Circulation at the Cleft–Vance Overlapping Spreading Center: Results of a Magnetometric Resistivity Survey’ J. Geophys. Res. 103 IssueIDB6 12321–21338 Occurrence Handle10.1029/98JB00599

    Article  Google Scholar 

  • Evans, R.L., Webb, S.C. and the RIFT-UMC Team.: 2002. ‘Crustal Resistivity Structure at 9°50’N on the East Pacific Rise: Results of an Electromagnetic Survey’, Geophys. Res. Lett. 29(6). doi:10.1029/2001GL014106.

  • J. H Filloux (1983) ‘Seafloor Magnetotelluric Soundings in the Mariana Island Arc Area Part II’ D. E. Hayes (Eds) The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands, Vol. 27 of Geophys. Monogr. AGU Washington, DC 255–265

    Google Scholar 

  • A. H. Flosadóttir J. C. Larsen J. T. Smith (1997) ArticleTitle‘Motional Induction in North Atlantic Circulation Models’ J. Geophys. Res. 102 IssueIDC5 10353–10372

    Google Scholar 

  • I. Fujii H. Utada (2000) ArticleTitle‘On Geoelectric Potential Variations over a Planetary Scale’ Memoirs of the Kakioka Magnetic Observatory 29 1–81

    Google Scholar 

  • Fukao, Y., Koyama, T., Obayashi, M. and Utada, H.: 2004. ‘Trans-Pacific Temperature Field in the Mantle Transition Region derived from Seismic and Electromagnetic Tomography’, Earth Planet. Sci. Lett., 217, 425–434, doi:10.1016/S0012-821X0300610-1.

  • T. Goto T. Kasaya H. Mikada M. Kinoshita K. Suyehiro T. Kimura Y. Ashida T. Watanabe K. Yamane (2003) ArticleTitle‘Electromagnetic Survey of Fluid Distribution and Migration – An Example at the Nankai Seismogenic Zone’ BUTSURI-TANSA 56 IssueID6 439–451

    Google Scholar 

  • T. Goto N. Seama H. Shiobara K. Baba M. Ichiki H. Iwamoto T. Matsuno K. Mochizuki Y. Nogi S. Oki K. Schwalenberg N. Tada K. Suyehiro H. Mikada T. Kanazawa Y Fukao H. Utada (2002) ArticleTitle‘Geophysical Experiments in the Mariana Region: Report of the YK01-11 Cruise’ InterRidge News 11 IssueID1 23–25

    Google Scholar 

  • D. H Green A. E. Ringwood (1970) ArticleTitle‘Mineralogy of Peridotitic Compositions Under Upper Mantle Conditions’ Phys. Earth Planet. Int. 3 359–371

    Google Scholar 

  • A. A. Greer M. C. Sinha L. M. MacGregor (2002) ArticleTitle‘Joint Effective Medium Modelling for Co-incident Seismic and Electromagnetic Data, and its Application to Studies of Porosity Structure at Mid-Ocean Ridge Crests’ LITHOS Science Report 4 103–120

    Google Scholar 

  • R. W., Groom R. C. Bailey (1989) ArticleTitle‘Decomposition of Magnetotelluric Impedance Tensors in the Presence of Local Three-dimensional Galvanic Distortion’ J. Geophys. Res. 94 IssueIDB2 1913–1925

    Google Scholar 

  • G. Heinson (1999) ArticleTitle‘Electromagnetic Studies of the Lithosphere and Asthenosphere’ Surv. Geophys. 20 229–255 Occurrence Handle10.1023/A:1006689521329

    Article  Google Scholar 

  • G. Heinson S. Constable (1992) ArticleTitle‘The Electrical Conductivity of the Oceanic Upper Mantle’ Geophys. J. Int. 110 159–179

    Google Scholar 

  • G. Heinson S. Constable A. White (1996) ArticleTitle‘Seafloor Magnetotelluric Sounding above Axial Seamount’ Geophys. Res. Lett. 23 IssueID17 2275–2278 Occurrence Handle10.1029/96GL01673

    Article  Google Scholar 

  • G. Heinson S. Constable A. White (2000) ArticleTitle‘Episodic Melt Transport at Mid-Ocean Ridges Inferred from Magnetotelluric Sounding’ Geophys. Res. Lett. 27 IssueID15 2317–2320 Occurrence Handle10.1029/2000GL011473

    Article  Google Scholar 

  • G. Heinson F. E. M. Lilley (1993) ArticleTitle‘An Application of Thin-sheet Electromagnetic Modelling to the Tasman Sea’ Phys. Earth Planet. Int. 81 231–251

    Google Scholar 

  • G. Hirth D. L. Kohlstedt (1996) ArticleTitle‘Water in the Oceanic Upper Mantle: Implications for Rheology, Melt Extraction and the Evolution of the Lithosphere’ Earth Planet. Sci. Lett. 144 93–108 Occurrence Handle10.1016/0012-821X(96)00154-9

    Article  Google Scholar 

  • Ichiki, M., Baba, K., Araki, E., Hashimoto, Y., Suzuki, K. and Mizota, A.: 2004a. ‘A Report on Kairei Cruise KR04-09’, Technical Report, JAMSTEC (in Japanese).

  • Ichiki, M., Baba, K., Obayashi, M. and Utada, H.: 2004b. ‘Water Content and Geotherm in the Upper Mantle above the Stagnant Slab: Interpretation of Electrical Conductivity and Seismic P-Wave Velocity Models’, Phys. Earth Planet. Int., submitted

  • T. Isse H. Shiobara Y. Fukao K. Mochizuki T. Kanazawa H. Sugioka S. Kodaira R. Hino D. Suetsugu (2004) ArticleTitle‘Rayleigh Wave Phase Velocity Measurements Across the Philippine Sea from a Broad-band OBS Array’ Geophys. J. Int. 158 257–266 Occurrence Handle10.1111/j.1365-246X.2004.02322.x

    Article  Google Scholar 

  • S. Karato (1990) ArticleTitle‘The Role of Hydrogen in the Electrical Conductivity of the Upper Mantle’ Nature 347 272–273 Occurrence Handle10.1038/347272a0

    Article  Google Scholar 

  • S. Karato H. Jung (1998) ArticleTitle‘Water, Partial Melting and the Origin of the Seismic Low Velocity and High Attenuation Zone in the Upper Mantle’ Earth Planet. Sci. Lett. 157 193–207 Occurrence Handle10.1016/S0012-821X(98)00034-X

    Article  Google Scholar 

  • Key, K. and Constable, S.: 2002. ‘Broadband Marine MT Exploration of the East Pacific Rise at 9°50’N’, Geophys. Res. Lett., 29(22). doi:10.1029/2002GL016035.

  • Key, K. and Constable, S.: 2004, ‘Constraining the Magmatic Budget of the EPR at 9°N Using Broadband Marine MT’, R.V. Roger Revelle Cruise Report, p. 13.

  • D. L. Kohlstedt S. J. Mackwell (1998) ArticleTitle‘Diffusion of Hydrogen and Intrinsic Point Defects in Olivine’ Z. Phys. Chem. 207 147–162

    Google Scholar 

  • Koyama, T.: 2002. ‘A Study of the Electrical Conductivity of the Mantle by Voltage Measurements for Submarine Cables’, Ph.D. thesis, University of Tokyo.

  • F.E.M. Lilley A. White G. Heinson K. Procko (2004) ArticleTitle‘Seeking a Seafloor Magnetic Signal from the Antarctic Circumpolar Current’ Geophys. J. Int. 157 175–186 Occurrence Handle10.1111/j.1365-246X.2004.02174.x

    Article  Google Scholar 

  • F. E. M. T. Lilley A. White G. Heinson (2001) ArticleTitle‘Earth’s Magnetic Field: Ocean Current Contributions to Vertical Profiles in Deep Oceans’ Geophys. J. Int. 147 163–175

    Google Scholar 

  • D. Lizarralde A. D. Chave G. Hirth A. Schultz (1995) ArticleTitle‘Northeastern Pacific Mantle Conductivity Profile from Long-Period Magnetotelluric Sounding Using Hawaii- to-California Submarine Cable Data’ J. Geophys. Res. 100 IssueIDB9 17873–17854 Occurrence Handle10.1029/95JB01244

    Article  Google Scholar 

  • L. MacGregor (1999) ArticleTitle‘Marine Controlled Source Electromagnetic Sounding: Development of a Regularised Inversion for 2-Dimensional Resistivity Structures’ LITHOS Science Report 1 103–109

    Google Scholar 

  • L. MacGregor M. Sinha S. Constable (2001) ArticleTitle‘Electrical Resistivity Structure of the Valu Fa Ridge, Lau Basin, from Marine Controlled-Source Electromagnetic Sounding’ Geophys. J. Int. 146 217–236 Occurrence Handle10.1046/j.1365-246X.2001.00440.x

    Article  Google Scholar 

  • L. M. MacGregor S. Constable M. C. Sinha (1998) ArticleTitle‘The RAMESSES Experiment – III. Controlled Source Electromagnetic Sounding of the Reykjanes Ridge at 57° 45′N’ Geophys. J. Int. 135 773–789 Occurrence Handle10.1046/j.1365-246X.1998.00705.x

    Article  Google Scholar 

  • L. M. MacGregor A. A. Greer M. C. Sinha C. Peirce (2002) ArticleTitle‘Properties of Crustal Fluids at the Valu Fa Ridge, Lau Basin, and Their Relationship to Active Hydrothermal Circulation, from Joint Analysis of Electromagnetic and Seismic Data’ LITHOS Science Report 4 121–130

    Google Scholar 

  • D. Mainprice G. Barruol W Ben Ismaïl (2000) ‘The Seismic Anisotropy of the Earth’s Mantle: From Single Crystal to Polycrystal’ S. Karato A. M. Forte R. C. Liebermann G. Masters L. Stixrude (Eds) Earth’s Deep Interior: Mineral Physics and Tomography: From the Atomic to the Global Scale, Vol. 117 of Geophys. Monogr. AGU Washington, DC 237–264

    Google Scholar 

  • R. Nolasco P. Tarits J. H. Filloux A. D. Chave (1998) ArticleTitle‘Magnetotelluric Imaging of the Society Islands Hotspot’ J. Geophys. Res. 103 IssueIDB12 30,287–30,309 Occurrence Handle10.1029/98JB02129

    Article  Google Scholar 

  • D. W. Oldenburg (1981) ArticleTitle‘Conductivity Structure of Oceanic Upper Mantle Beneath the Pacific Plate’ Geophys. J.R. Astr. Soc. 65 359–394

    Google Scholar 

  • N. A. Palshin (1996) ArticleTitle‘Oceanic Electromagnetic Studies: A Review’ Surv. Geophys. 17 455–491 Occurrence Handle10.1007/BF01901641

    Article  Google Scholar 

  • C. Park K. Tamaki K. Kobayashi (1990) ArticleTitle‘Age-depth Correlation of the Philippine Sea Back-arc Basins and other Marginal Basins in the World’ Tectonophysics 181 351–371

    Google Scholar 

  • J. Park T. Tsuru S. Kodaira P.R. Cummins Y. Kaneda (2002) ArticleTitle‘Splay Fault Branching Along the Nankai Subduction Zone’ Science 297 1157–1160

    Google Scholar 

  • Park, S.K. and Ducea, M.N.: 2003. ‘Can In situ Measurements of Mantle Electrical Conductivity be Used to Infer Properties of Partial Melts?’, J. Geophys. Res., 108(B5), doi:10. 1029/2002JB001899.

    Google Scholar 

  • A. T. Price (1949) ArticleTitle‘The Induction of Electric Currents in Non-uniform Thin-sheets and Shells’ Quart. J. Mech. App. Math. 2 283–310

    Google Scholar 

  • W. Rodi R. L. Mackie (2001) ArticleTitle‘Nonlinear Conjugate Gradients Algorithm for 2-D Magnetotelluric Inversion’ Geophysics 66 IssueID1 174–187 Occurrence Handle10.1190/1.1444893

    Article  Google Scholar 

  • K. Schwalenberg R. N. Edwards (2004) ArticleTitle‘The Effect of Seafloor Topography on Magnetotelluric Fields: An Analytical Formulation Confirmed with Numerical Results’ Geophys. J. Int. 159 607–621 Occurrence Handle10.1111/j.1365-246X.2004.02280.x

    Article  Google Scholar 

  • Seama, N., Baba, K., Utada, H., Toh, H., Tada, N., Ichiki, M. and Matsuno, T.: 2004, ‘1D Electrical Conductivity Structure Beneath the Philippine Sea: Results from an Ocean Bottom Magnetotelluric Survey’, Phys. Earth Planet. Int., submitted

  • M. C. Sinha S. C. Constable C. Peirce A. White G. Heinson L. M. MacGregor D. A. Navin (1998) ArticleTitle‘Magmatic Processes at Slow Spreading Ridges: Implication of the RAMESSES Experiment at 57° 45′N on the Mid-Atlantic Ridge’ Geophys. J. Int. 135 731–745 Occurrence Handle10.1046/j.1365-246X.1998.00704.x

    Article  Google Scholar 

  • W. Siripunvaraporn G. Egbert (2000) ArticleTitle‘An Efficient Data-Subspace Inversion Method for 2-D Magnetotelluric Data’ Geophysics 65 IssueID3 791–803 Occurrence Handle10.1190/1.1444778

    Article  Google Scholar 

  • J. T. Smith J. R. Booker (1991) ArticleTitle‘Rapid Inversion of Two- and Three-dimensional Magnetotelluric Data’ J. Geophys. Res. 96 IssueIDB3 3905–3922 Occurrence Handle10.1029/90JB02416

    Article  Google Scholar 

  • InstitutionalAuthorNameThe MELT Seismic Team (1998) ArticleTitle‘Imaging the Deep Seismic Structure Beneath a Mid-Ocean Ridge: The MELT Experiment’ Science 280 1215–1218

    Google Scholar 

  • P. Tarits A. D. Chave A. Schultz (1993) ArticleTitle‘Comment on “The Electrical Conductivity of the Oceanic Upper Mantle” by G. Heinson and S. Constable’ Geophys. J. Int. 114 711–716

    Google Scholar 

  • H. Toh (2003) ArticleTitle‘Asymmetric Electrical Structures Beneath Mid-ocean Ridges’ J. Geography 112 IssueID5 684–691

    Google Scholar 

  • H. Toh T. Goto Y. Hamano (1998) ArticleTitle‘A New Seafloor Electromagnetic Station with an Overhauser Magnetometer, a Magnetotelluric Variograph and an Acoustic Telemetry Modem’ Earth Planet. Space 50 895–903

    Google Scholar 

  • Toh, H., Hamano, Y. and Goto, T.: 2001. ‘Seafloor Electromagnetic Station: The Third Generation’, in: OHP/ION Joint Symposium Long-term Observations in the Oceans: Current Status and Perspectives for the Future, pp. 21–23.

  • H. Toh Y. Hamano M. Ichiki H. Utada (2004) ArticleTitle‘Geomagnetic Observatory Operates at the Seafloor in the Northwest Pacific Ocean’ EOS 85 IssueID45 467–473

    Google Scholar 

  • D. R. Toomey W. S. D. Wilcock S. C. Solomon W. C. Hammond J. A. Orcutt (1998) ArticleTitle‘Mantle Seismic Structure Beneath the MELT Region of the East Pacific Rise from P and S Wave Tomography’ Science 280 1224–1227 Occurrence Handle10.1126/science.280.5367.1224

    Article  Google Scholar 

  • D.L. Turcotte G. Schubert (2002) Geodynamics EditionNumber2 Cambridge University Press Cambridge, UK

    Google Scholar 

  • I. M. Turner C. Peirce M. Sinha (1999) ArticleTitle‘Seismic Imaging of the Axial Region of the Valu Fa Ridge, Lau Basin – The Accretionary Processes of an Intermediate Back-arc Spreading Ridge’ Geophys. J. Int. 138 495–519 Occurrence Handle10.1046/j.1365-246X.1999.00883.x

    Article  Google Scholar 

  • T. Uchida (1993) ArticleTitle‘Smooth 2-D Inversion for Magnetotelluric Data Based on Statistical Criterion ABIC’ J. Geomag. Geoelectr. 45 841–858

    Google Scholar 

  • M. J. Unsworth B. J. Travis A. D. Chave (1993) ArticleTitle‘Electromagnetic Induction by a Finite Electric Dipole Source Over a 2-D Earth’ Geophysics 58 IssueID2 198–214 Occurrence Handle10.1190/1.1443406

    Article  Google Scholar 

  • Utada, H., Koyama, T., Shimizu, H. and Chave, A.D.: 2003. ‘A Semi-Global Reference Model for Electrical Conductivity in the Mid-Mantle Beneath the North Pacific Region’, Geophys. Res. Lett., 30(4), doi:10.1029/2002GL016092.

  • L. Wang Y. Zhang E. J. Essene (1996) ArticleTitle‘Diffusion of the Hydrous Component in Pyrope’ American Mineralogist 81 706–718

    Google Scholar 

  • P. Wessel W. H. F. Smith (1998) ArticleTitle‘New, Improved Version of the Generic Mapping Tools Released’ EOS Trans. AGU 79 579

    Google Scholar 

  • C. J. Wolfe S. C. Solomon (1998) ArticleTitle‘Shear-wave Splitting and Implications for Mantle Flow Beneath the MELT Region of the East Pacific Rise’ Science 280 1230–1232 Occurrence Handle10.1126/science.280.5367.1230

    Article  Google Scholar 

  • S. C. Woods S. Mackwell D. Dyar (2000) ArticleTitle‘Hydrogen in Diopside: Diffusion Profiles’ Amer. Mineralogist 85 480–487

    Google Scholar 

  • Woods, S.C. and Mackwell, S.J.: 1999. ‘Hydrogen Diffusion in Enstatite’, Technical Report Bayerisches Forschungsinstitut fur Experimentelle Geochemie und Geophysik, http://www.bgi.uni-bayreuth.de.

  • Y. Xu B. T. Poe T. J. Shankland D. C. Rubie (1998) ArticleTitle‘Electrical Conductivity of Olivine, Wadsleyite, and Ringwoodite Under Upper-Mantle Conditions’ Science 280 IssueID29 1415–1418

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyoshi Baba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baba, K. Electrical Structure in Marine Tectonic Settings. Surv Geophys 26, 701–731 (2005). https://doi.org/10.1007/s10712-005-1831-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-005-1831-2

Keywords

Navigation