Skip to main content

Advertisement

Log in

Initialisation of Land Surface Variables for Numerical Weather Prediction

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

Land surface processes and their initialisation are of crucial importance for Numerical Weather Prediction (NWP). Current land data assimilation systems used to initialise NWP models include snow depth analysis, soil moisture analysis, soil temperature and snow temperature analysis. This paper gives a review of different approaches used in NWP to initialise land surface variables. It discusses the observation availability and quality, and it addresses the combined use of conventional observations and satellite data. Based on results from the European Centre for Medium-Range Weather Forecasts (ECMWF), results from different soil moisture and snow depth data assimilation schemes are shown. Both surface fields and low-level atmospheric variables are highly sensitive to the soil moisture and snow initialisation methods. Recent developments of ECMWF in soil moisture and snow data assimilation improved surface and atmospheric forecast performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albergel C, de Rosnay P, Gruhier C, Sabater JM, Hasenauer S, Isaksen L, Kerr Y, Wagner W (2012) Evaluation of remotely sensed and modelled soil moisture products using global ground-based in-situ observations. Remote Sens Environ 18:215–226. doi:10.1016/j.rse.2011.11.017

    Article  Google Scholar 

  • Balsamo G, Mahfouf JF, Bélair S, Deblonde G (2007) A land data assimilation system for soil moisture and temperature: an information content study. J Hydrometeorol 8:1225–1242. doi:10.1175/2007JHM819.1

    Article  Google Scholar 

  • Balsamo G, Viterbo P, Beljaars A, van den Hurk B, Hirsch M, Betts A, Scipal K (2009) A revised hydrology for the ECMWF model: verification from field site to terrestrial water storage and impact in the Integrated Forecast System. J Hydrometeorol 10:623–643

    Article  Google Scholar 

  • Barnett T, Adam J, Lettenmaier D (2005) Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438:303–309

    Article  Google Scholar 

  • Bartalis Z, Wagner W, Naeimi V, Hasenauer S, Scipal K, Bonekamp H, Figa J, Anderson C (2007) Initial soil moisture retrievals from the METOP-A advanced scatterometer (ASCAT). Geophys Res Lett 34. doi:10.1029/2007GL031088

  • Bélair S, Crevier LP, Mailhot J, Bilodeau J, Delage Y (2003) Operational implementation of the ISBA land surface scheme in the Canadian regional weather forecast model. Part I: warm season results. J Hydrometeorol 4:352–470

    Article  Google Scholar 

  • Beljaars ACM, Viterbo P, Miller M, Betts A (1996) Sensitivity to land surface parameterization and soil anomalies. Mon Weather Rev 124:362–383

    Article  Google Scholar 

  • Best M, Pryor M, Clark D, Rooney G, Essery R, Ménard C, Edwards J, Hendry M, Porson A, Gedney N, Mercado L, Sitch S, Blyth E, Boucher O, Cox P, Grimmond C, Harding R (2011) The joint UK land environment simulator (JULES), model description Part 1: energy and water fluxes. Geosci Model Dev 4:677–699. doi:10.5194/gmd-4-677-2011

    Article  Google Scholar 

  • Boone A, Habets F, Noilhan J, Clark D, Dirmeyer P, Fox S, Gusev Y, Haddeland I, Koster R, Lohmann D, Mahanama S, Mitchell K, Nasonova O, Niu GY, Pitman A, Polcher J, Shmakin A, Tanaka K, van den Hurk B, Vérant S, Verseghy D, Viterbo P, Yang ZL (2004) The Rhone-Aggregation land surface scheme intercomparison project: an overview. J Clim 17:187–208

    Article  Google Scholar 

  • Brasnett B (1999) A global analysis of snow depth for numerical weather prediction. J Appl Meteorol 38:726–740

    Article  Google Scholar 

  • Brown R, Mote P (2009) The response of northern hemisphere snow cover to a changing climate. J Clim 22:2124–2144

    Article  Google Scholar 

  • Brubaker K, Pinker R, Deviatova E (2009) Evaluation and comparison of MODIS and IMS snow-cover estimates for the continental United States using station data. J Hydrometeorol 6:1002–1017

    Article  Google Scholar 

  • Calvet JC, Fritz N, Froissard F, Suquia D, Petitpa B, Piguet B (2007) In situ soil moisture observations for the CAL/VAL of SMOS: the SMOSMANIA network. International geoscience and remote sensing symposium, IGARSS, Barcelona, Spain. doi:10.1109/IGARSS.2007.4423019

  • Cohen J, Foster J, Barlow M, Saito K, Jones J (2010) Winter 2009–2010: a case study of an extreme arctic oscillation event. Geophys Res Lett 37:117707. doi:10.1029/2010GL044256

    Google Scholar 

  • Cressman G (1959) An operational objective analysis system. Mon Weather Rev 87(10):367–374

    Article  Google Scholar 

  • De Lannoy G, Reichle R, Arsenault K, Houser P, Kumar S, Verhoest N, Pauwels V (2012) Multiscale assimilation of Advanced Microwave Scanning Radiometer EOS snow water equivalent and Moderate Resolution Imaging Spectroradiometer snow cover fraction observations in northern Colorado. Water Resour Res 48:w01522. doi:10.1029/2011WR010588

    Google Scholar 

  • de Rosnay P, Polcher J, Bruen M, Laval K (2002) Impact of a physically based soil water flow and soil–plant interaction representation for modeling large scale land surface processes. J Geophys Res 107(11). doi:10.1029/2001JD000634

  • de Rosnay P, Dragosavac M, Isaksen L, Andersson E, Haseler J (2011a) Use of new snow data from Sweden in IFS cycle 36r4. ECMWF Res Memo R483/PdR/1139

  • de Rosnay P, Balsamo G, Isaksen L (2011b) Snow analysis for numerical weather prediction at ECMWF. IGARSS 2011

  • de Rosnay P, Drusch M, Vasiljevic D, Balsamo G, Albergel C, Isaksen L (2012) A simplified extended Kalman filter for the global operational soil moisture analysis at ECMWF. Q J R Meteorol Soc. doi:10.1002/qj.2023

  • Dee D, Uppala S, Simmons A, Berrisford P, Poli P, Kobayashi S, Andrae U, Balsameda M, Balsamo G, Bauer P, Bechtold P, Beljaars A, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer A, Haimberger L, Healy S, Hersbach H, Hólm E, Isaksen L, Kållberg P, Köhler M, Marticardi M, McNally A, Monge-Sanz B, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Dharssi I, Bovis K, Macpherson B, Jones C (2011) Operational assimilation of ASCAT surface soil wetness at the met office. Hydrol Earth Syst Sci 15:2729–2746. doi:10.5194/hess-15-2729-2011

    Google Scholar 

  • Douville H, Mahfouf JF, Beljaars A (2000) Evaluation of optimal interpolation and nudging techniques for soil moisture analysis using FIFE data. Mon Weather Rev 128:1733–1756

    Article  Google Scholar 

  • Draper C, Mahfouf JF, Walker JP (2011) Root zone soil moisture from the assimilation of scree-level variables and remotely sensed soil moisture. J Geophys Res 116:d02127. doi:10.1029/2010JD013829

    Google Scholar 

  • Draper C, Reichle R, De Lannoy G, Liu Q (2012) Assimilation of passive and active microwave soil moisture retrievals. Geophys Res Lett 39:l04401. doi:10.1029/2011GL050655

    Article  Google Scholar 

  • Drusch M, Viterbo P (2007) Assimilation of screen-level variables in ECMWF’s Integrated Forecast System: a study on the impact on the forecast quality and analyzed soil moisture. Mon Weather Rev 135:300–314

    Article  Google Scholar 

  • Drusch M, Vasiljevic D, Viterbo P (2004) ECMWF s global snow analysis: assessment and revision based on satellite observations. J Appl Meteorol 43:1282–1294

    Article  Google Scholar 

  • Drusch M, Scipal K, de Rosnay P, Balsamo G, Andersson E, Bougeault P, Viterbo P (2009) Towards a Kalman filter based soil moisture analysis system for the operational ECMWF Integrated Forecast System. Geophys Res Lett 36:110401. doi:10.1029/2009GL037716

    Article  Google Scholar 

  • Dutra E, Balsamo G, Viterbo P, Miranda P, Beljaars A, Schär C, Elder K (2010) An improved snow scheme for the ECMWF land surface model: description and offline validation. J Hydrometeorol 11:899–916. doi:10.1175/2010JHM1249.1

    Article  Google Scholar 

  • ECMWF (2012) IFS documentation Cy37r2 operational implementation 18 May 2011. available at http://wwwecmwfint/research/ifsdocs/CY37r2

  • Entekhabi D, Asrar G, Betts A, Beven K, Bras R, Duffy C, Dunne T, Koster R, Lettenmaier D, DB ML, Shuttleworth W, van Genuchten M, Wei MY, Wood E (1999) An agenda for land surface hydrology research and a call for the second international hydrological decade. Bull Am Meteorol Soc 10:2043–2058

    Article  Google Scholar 

  • Entekhabi D, Njoku E, O’Neill P, Kellog K, Crow W, Edelstein W, Entin J, Goodman S, Jackson T, Johnson J, Kimball J, Piepmeier J, Koster R, Martin N, McDonald K, Moghaddam M, Moran S, Reichle R, Shi J, Spencer M, Thurman S, Tsang L, Van Zyl J (2010) The soil moisture active passive (SMAP) mission. Proc IEEE 98(5):704–716

    Article  Google Scholar 

  • Essery RLH, Rutter N, Pomeroy J, Baxter R, Stähli M, Gustafsson D, Barr A, Bartlett P, Elder K (2009) SNOWMIP2: an evaluation of forest snow process simulations. Bull Am Meteorol Soc 90:1120–1135. doi:10.1175/2009BAMS2629.1

    Article  Google Scholar 

  • Giard D, Bazile E (2000) Implementation of a new assimilation scheme for soil and surface variables in a global NWP model. Mon Weather Rev 128:997–1015

    Article  Google Scholar 

  • Gong G, Entekhabi D, Cohen J, Robinson D (2004) Sensitivity of atmospheric response to modeled snow anomaly characteristics. J Geophys Res 109:d06107. doi:10.1029/2003JD004160

    Google Scholar 

  • Helfrich SR, McNamara D, Ramsay B, Baldwin T, Kasheta T (2007) Enhancements to, and forthcoming developments in the interactive multisensor snow and ice mapping system, (IMS). Hydrol Process 21:1576–1586. doi:10.1002/hyp.6720

    Article  Google Scholar 

  • Hess R (2001) Assimilation of screen-level observations by variational soil moisture analysis. Meteorol Atmos Phys 77:145–154

    Article  Google Scholar 

  • Kerr YH, Waldteufel P, Wigneron JP, Delwart S, Cabot F, Boutin J, Escorihuela M, Font J, Reul N, Gruhier C, Juglea S, Drinkwater M, Hahne A, Martín-Neira M, Mecklenburg S (2007) The SMOS mission: new tool for monitoring key elements of the global water cycle. Proc IEEE 98(5):666–687

    Article  Google Scholar 

  • Koster R, Mahanama P, Yamada T, Balsamo G, Berg A, Boisserie M, Dirmeyer P, Doblas-Reyes F, Drewitt G, Gordon C, Guo Z, Jeong J, Lee W, Li Z, Luo L, Malyshev S, Merryfield W, Seneviratne S, Stanelle T, van den Hurk B, Vitart F, Wood E (2011) The second phase of the global land-atmosphere coupling experiment: soil moisture contributions to subseasonal forecast skill. J Hydrometeorol 12:805–822

    Article  Google Scholar 

  • Koster RD, Suarez MJ (1992) Modeling the land surface boundary in climate models as a composite of independent vegetation stands. J Geophys Res 97:2697–2715

    Article  Google Scholar 

  • Koster RD, Dirmeyer P, Guo Z, Bonan G, Cox P, Gordon C, Kanae S, Kowalczyk E, Lawrence D, Liu P, Lu C, Malyshev S, McAvaney B, Mitchell K, Mocko D, Oki T, Oleson K, Pitman A, Sud Y, Taylor C, Verseghy D, Vasic R, Xue Y, Yamada T (2004) Regions of strong coupling between soil moisture and precipitation. Sciences 305:1138–1140

    Article  Google Scholar 

  • Krinner G, Viovy N, de Noblet-Ducoudré N, Ogée J, Polcher J, Friedlingstein P, Ciais P, Sitch S, Prentice I (2005) A dynamic global vegetation model for studies of the coupled atmosphere–biosphere system. Global Biogeochem Cycles 19:GB1015, 33 pp. doi:10.1029/2003GB002199

  • Mahfouf JF (1991) Analysis of soil moisture from near-surface parameters: a feasibility study. J Appl Meteorol 30:1534–1547

    Article  Google Scholar 

  • Mahfouf JF (2010) Assimilation of satellite-derived soil moisture from ASCAT in a limited-area NWP model. Q J R Meteorol Soc 136:784–798. doi:10.1002/qj.602

    Google Scholar 

  • Mahfouf JF, Viterbo P, Douville H, Beljaars A, Saarinen S (2000) A revised land-surface analysis scheme in the Integrated Forecasting System. ECMWF Newslett 88

  • Mahfouf JF, Bergaoui K, Draper C, Bouyssel F, Taillefer F, Taseva L (2009) A comparison of two offline soil analysis schemes for assimilation of screen level observations. J Geophys Res 114. doi:10.1029/2008JD011077

  • Meng J, Yang R, Wei H, Ek M, Gayno G, Xie P, Mitchell K (2012) The land surface analysis in the NCEP climate forecast system reanalysis. J Hydrometeorol. doi:10.1175/JHM-D-11-090.1

  • Mueller B, Seneviratne S (2012) Hot days induced by precipitation deficits at the global scale. Proc Nat Acad Sci USA 109(31):12398–12403. doi:10.1073/pnas.1204330109

    Article  Google Scholar 

  • Pullen S, Jones C, Rooney G (2011) Using satellite-derived snow cover data to implement a snow analysis in the met office NWP model. J Appl Meteorol 50:958–973. doi:10.1175/2010JAMC2527.1

    Article  Google Scholar 

  • Ramsay B (1998) The interactive multisensor snow and ice mapping system. Hydrol Process 12:1537–1546

    Article  Google Scholar 

  • Reichle RH, Walker JP, Koster RD, Houser PR (2002) Extended versus ensemble Kalman filtering for land data assimilation. J Hydrometeorol 3:728–740

    Article  Google Scholar 

  • Reichle RH, Crow WT, Keppenne CL (2008) An adaptive ensemble Kalman filter for soil moisture data assimilation. Water Resour Res 44:W03423. doi:10.1029/2007WR006357

    Google Scholar 

  • Rodell M, Houser P (2004) Updating a land surface model with MODIS-derived snow cover. J Hydrometeorol 5:1064–1075

    Article  Google Scholar 

  • Rodríguez A, Navascues B, Ayuso J, Järvenoja S (2003) Analysis of surface variables and parameterization of surface processes in HIRLAM. Part I: approach and verification by parallel runs. HIRLAM technical report No 59, Norrköping, Sweden, 52pp

  • Rott H, Cline D, Duguay C, Essery R, Haas C, Kern M, Macelloni G, Malnes E, Pulliainen J, Rebhan H, et al (2009) CoReH2O—cold regions hydrology high-resolution observatory. 2009 IEEE radar conference. doi:10.1109/RADAR.2009.4977133

  • Sabater JM, Fouilloux A, de Rosnay P (2011) Technical implementation of SMOS data in the ECMWF Integrated Forecasting System. IEEE Trans Geosc Remote Sens. doi:10.1109/LGRS.2011.2164777

  • Scipal K, Drusch M, Wagner W (2008) Assimilation of a ers scatterometer derived soil moisture index in the ECMWF numerical weather prediction system. Adv Water Resour. doi:10.1016/j.advwatres.2008.04.013

  • Seuffert G, Wilker H, ViterboM P Drusch, Mahfouf JF (2004) The usage of screen-level parameters and microwave brightness temperature for soil moisture analysis. J Hydrometeorol 5:516–531

    Article  Google Scholar 

  • Shukla J, Mintz Y (1982) Influence of land-surface evaporation on the Earth’s climate. Science 215:1498–1501

    Article  Google Scholar 

  • Takala M, Luojus K, Pulliainen J, Derksen C, Lemmetyinen J, Kärnä JP, Koskinen J, Bojkov B (2011) Estimating northern hemisphere snow water equivalent for climate research through assimilation of space-borne radiometer data and ground-based measurements. Remote Sens Environ 115:3517–3529. doi:10.1016/j.rse.2011.08.014

    Article  Google Scholar 

  • Uppala SM, Kållberg PW, Simmons A, Andrae U, Da Costa Bechtold V, Fiorino M, Gibson J, Haseler J, Hernandez A, Kelly G, Li X, Onogi K, Saarinen S, Sokka N, Allan R, Andersson E, Arpe K, Balmaseda M, Beljaars A, Van De Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E, Hoskins B, Isaksen L, Janssen P, Jenne R, Mcnally A, Mahfouf JF, Morcrette JJ, Rayner N, Saunders R, Simon P, Sterl A, Trenberth K, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012. doi:10.1256/qj.04.176

    Article  Google Scholar 

  • van den Hurk B, Ettema J, Viterbo P (2008) Analysis of soil moisture changes in Europe during a single growing season in a new ECMWF soil moisture assimilation system. J Hydrometeorol 9:116–131. doi:10.1175/2007JHM848.1

    Google Scholar 

  • Viterbo P, Beljaars ACM (1995) An improved land surface parameterization scheme in the ECMWF model and its validation. Technical report 75, ECMWF

  • Walland DJ, Simmonds I (1997) Modelled atmospheric response to changes in northern hemisphere snow cover. Clim Dyn 13:25–34. doi:10.1007/s003820050150

    Google Scholar 

  • Weisheimer A, Doblas-Reyes P, Jung T, Palmer T (2011) On the predictability of the extreme summer 2003 over Europe. Geophys Res Lett 38. doi:10.1029/2010GL046455

Download references

Acknowledgments

The authors thank two anonymous reviewers for their careful review of the manuscript and their helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia de Rosnay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Rosnay, P., Balsamo, G., Albergel, C. et al. Initialisation of Land Surface Variables for Numerical Weather Prediction. Surv Geophys 35, 607–621 (2014). https://doi.org/10.1007/s10712-012-9207-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-012-9207-x

Keywords

Navigation